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PERFORMANCE AND STABILITY OF TELEMANIPULATORS
USING BILATERAL IMPEDANCE CONTROL

ABSTRACT

The research investigates a new method of control for telemanipulators called
bilateral impedance control. This new method differs from previous approaches in that
interaction forces are used as the communication signals between the master and slave
robots. The new control architecture has several advantages:

1. It allows the master robot and the slave robot to be stabilized independently
without becoming involved in the overall system dynamics.

2. It permits the system designers to arbitrarily specify desired performance
characteristics such as the force and position ratios between the master and slave.

3. The impedance at both ends of the telerobotic system can be modulated to suit
the requirements of the task.

The main goals of the research are to characterize the performance and stability of
the new control architecture. The dynamics of the telerobotic system are described by a
bond graph model that illustrates how energy is transformed, stored, and dissipated.

Performance can be completely described by a set of three independent parameters.
These parameters are fundamentally related to the structure of the H matrix that regulates
the communication of force signals within the system. By tailoring the H matrix, the
performance parameters can be arbitrarily specified to achieve desired performance
characteristics. The only limitations on the choice of these parameters are imposed by
system stability.

Stability is analyzed with two mathematical techniques: the Small Gain Theorem
and the Multivariable Nyquist Criterion. The Small Gain Theorem is used to arrive at a
general set of stability conditions that is equally valid for linear as well as nonlinear
systems. The Multivariable Nyquist Criterion is used to analyze the stability of linear
systems with transfer function matrix operators.

The theoretical predictions for performance and stability are experimentally verified
by implementing the new control architecture on a multi-degree-of-freedom telemanipulator.
The frequency response of the performance parameters are measured, and the absolute
stability bounds are determined. Robustness to modeling uncertainties is demonstrated
from the shape of the frequency response.
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Chapter 1
INTRODUCTION

1.1 Introduction

A telerobotic system consists of two robots; the "master,” which is driven by a
human operator, and the "slave,"” which performs tasks at a remote location. The motion of
the slave robot is a function of the master robot. Figure 1.1 shows the elements of a
telerobotic system where the human is pushing against an object.

Teleoperation is greatly enhanced if the forces acting on the slave robot are fed back
to the operator. This gives the operator the feeling that she is manipulating the remote
object directly. Systems that employ force reflection are called "bilateral” because
information flows in two directions between the master and the slave. An historical
overview of telerobotics is given in Sheridan (1988).

This research proposes a new method of telerobotic control. The proposed control
architecture has several advantages over previous approaches. First, the control method
allows the designers to stabilize the master robot and the slave robot independently, without
getting involved in the overall system dynamics. It is not necessary to include the dynamics
of the human, the dynamics of the object being manipulated, or any cross coupling between
the master and the slave.

Second, the control method allows the specification of desired performance
characteristics. It is possible to arbitrarily select three independent performance parameters.
These may be the force reflection ratio, the master-to-slave position ratio, and the impedance
of either robot. Impedance is defined as the ratio of force to position (or velocity), and it is
a measure of the robot's resistance to motion. The only limitations on the choice of these
parameters are the bounds imposed by system stability.

Finally, the control method works for both direct and non-direct drive systems. A
non-direct drive system is one in which gears or chains transfer mechanical power from the
motors to the robot links. Present control architectures work well only for direct drive
systems where the human can easily overcome the friction and inertia of the master robot.
With a non-direct drive system, the human may not be able to exert sufficient force to move
the robot. Even with direct drive systems, the master impedance may be significant, and this
contributes to operator fatigue. The proposed control architecture overcomes the impedance
problem by sensing the interaction forces between the human and the master, and using the
forces as input to drive the robot. This method is called "impedance control” because it
establishes a relationship between force and position (Kazerooni 1989).



1.2 Dynamic Behavior of the Telerobotic System

The dynamic behavior of a telerobotic system results from the interaction of its
components: the master and slave robots, the human, and the environment. A dynamic
model for each component will be developed separately. These models will then be
combined to form a control architecture that describes the overall system dynamics.

1.2.1 Dynamic Behavior of the Telerobots

It is assumed that both the master and the slave robots are stabilized by independent
closed-loop position controllers. The compensators that stabilize the robots may include
velocity feedback, but closed-loop velocity control by itself cannot guarantee that the motion
of the slave will always follow the motion of the master. There are two significant
motivations for using closed-loop position controllers as the primary stabilizing
compensators. First, safety dictates that the master remains stable when it is not being
manipulated by the human. Closed-loop position controllers keep the master and slave
robots stationary when the human is not interacting with the system. Second, the primary
stabilizing compensators can be designed without getting involved in the overall dynamics
of the system. It is not necessary to include the dynamics of the human, the dynamics of
the object being manipulated, or any cross coupling between the master and the slave. A
variety of robust control methods can be used to stabilize the master and slave robots
indépcndently (Spong and Vidyasagar 1985).

The master position vector, yp,, is a function of two variables: the electronic
commands to the master drive motors, and the external forces imposed on the master robot.!
The operator G, represents the primary closed-loop system, which consists of the master
robot and the stabilizing compensator. The input to the primary closed-loop system is the
electronic command, u,, The output is the master position, yp,. The master sensitivity
operator, Sy, relates the force imposed on the master robot, fy,, to its position, yp,. The
sensitivity depends on the robot's mechanical characteristics as well as the strength of the
stabilizing position controller. Equation 1.1 represents the master robot dynamic behavior
in its most general form.

IFor convenience, "position" implies both position and orientation; "force”
implies both force and torque.



¥Ym = Gm(um) + Spmfm) (1.1

Since the master robot is in contact with only the human, f;, represents the forces exerted by
the human. The dynamic behavior of the slave robot can be similarly defined by equation
1.2.

ys = Gg(ug) + S¢(fy) (1.2)

where f represents the forces imposed on the slave by the environment, and ug is the
electronic input command to the slave drive motors. Gg and S are defined in the same way
as G, and S,.2

1.2.2 Dynamic Behavior of the Human Arm

The internal structure of the human arm is not considered in a dynamic model. A
relationship between inputs and outputs implicitly accounts for the dynamics of nerve
conduction, muscle contraction, and central nervous system processing. Since the human
arm is in contact with the master robot only, the position and velocity disturbances on the
human arm are solely from the master robot.

The human arm can be modeled as a non-ideal force control system (Kazerooni
1990). The force imposed on the master robot by the human arm results from two inputs.
The first input, up, is issued by the human central nervous system, while the motion of the
master robot forms the second input. The master robot motion can be thought of as a
position or velocity disturbance occurring on the force-controlled human arm. In other
words, if the master robot is stationary, the amount of force imposed on the master robot
will only be a function of the commands from the central nervous system. However, if the
master robot moves, then the force imposed on the master robot is a function of not only the
central nervous system, but also the motion of the master robot. It is assumed that the
specific form of uy, is not known, other than it is the human thought deciding to impose a
force onto the master robot. The human arm "sensitivity"” operator, Sy, is defined in
equation 1.3 to map the master robot position, yp,, into the imposed force, fm-

fm =up - Splym) (1.3)

2The subscript "m" signifies the master; "s" refers to the slave.



The minus sign results from the disturbance rejection property of the human arm. The
master robot motion decreases the force imposed by the human.

1.2.3 Dynamic Behavior of the Environment

The master-slave system is used for manipulating heavy objects or for imposing
large forces on the objects. The term "environment” represents any object being
manipulated or pushed by the slave robot. A simple example of environmental interaction is
seen in Figure 1.2 where the slave robot is pushing against a compliant object. The object
has been modeled as a first-order system with equivalent stiffness and damping. The
amount of deformation of the environment is equal to y,, the position vector of the slave
robot. If the positive direction of f; is defined to be from the environment to the slave, the

imposed force on the slave is given by
fs = -(K + Cs)yg

where K, C, and s are the stiffness, damping, and the Laplace operator, respectively. In
another example, shown in Figure 1.3, an object with mass m is rotating counterclockwise
around the origin with angular acceleration ¥5. A clockwise constraining torque of fg acts

on the slave such that
fs = -[mL2 4 + mgLcos(y)]

where y; is the angular orientation of the slave.

The previous examples suggest that the environmental dynamics can be represented
by a nonlinear operator, E, which maps the slave position, yg, into the imposed force on the
slave robot, f. If fy, is the resultant of all external forces acting on the slave, then a general

expression for the total force imposed on the robot is
fs = -E(y;) + fext (1.4)

The environment is ususally considered to be a passive element with no independent
sources of effort. Thus, in most cases, it is assumed that fex, = 0.



1.3 Telerobetic Control Architectures

The dynamic behavior of the overall telerobotic system, including the human and the
environment, can be represented by a block diagram. The block diagram traces the flow of
signals between the various system components. A block diagram is constructed by
combining the dynamic equations for the human, the master and slave robots, and the
environment (Equations 1.1-1.4). These equations can be combined in many ways t0 form
different control architectures. The two most common control architectures in present use
are the classical position error architecture and the forward flow architecture.

1.3.1 Position Error Control Architecture

In the position error architecture (Figure 1.4), the position of the master is the
reference input command to the slave primary control loop. Similarly, the slave position is
the input command to the master primary control loop. In other words, the error between
the master and slave positions drives the robots (Hannaford 1989). There is no force
reflection since no forces are measured. However, a position error is generated whenever
the slave robot contacts the environment, and this allows the human to feel the interaction.

The main disadvantage of the position error architecture is that the human must
work against the impedance of the master robot. If the sensitivity Sm is small (high
impedance), then the human may not be able to exert sufficient force to move the robot. For
this reason, the position error architecture is best suited for use in direct-drive systems
where the master impedance is relatively low. Another disadvantage of this architecture is
that it is extremely sensitive to communication time delays between the master and slave.
This results from the feedback signal having to travel in the long loop from the master to the
slave and back again (Hannaford 1989).

1.3.2 Forward Flow Control Architecture

The forward flow architecture (Figure 1.5) is similar to the position error
architecture in that the master position is used to drive the slave. Position information flows
in the forward direction from the master to the slave, giving the architecture its name. The
forward flow architecture is an improvement in that it provides true force reflection by
sensing the force imposed on the slave robot. The slave force is used as the input command
to the master primary control loop (Hannaford 1989). The forward flow architecture
suffers from the same disadvantages as the position error architecture: it does not permit



the impedance of the master robot to be adjusted, and it is sensitive to communication time
delays.

1.3.3 Local Force Feedback Architectures

Several researchers have noted that in theory, local force feedback on the slave tends
to improve stability. In architectures of this type, the input command to the slave stabilizing
control system has the form

US=Ym+afs

where o is the gain of the force feedback signal. The measured slave force is used to
backdrive the robot, generating compliance in interactions with the environment. Anderson
and Spong (1989) proved that certain position error architectures with local force feedback
are assymtotically stable in the presence of time delay. Hannaford (1989) has shown that
local force feedback can improve the stability of the forward flow architecture.

A further enhancement can be made to the basic forward flow architecture if local
force feedback is also utilized on the master. This increases the apparent sensitivity of the
master robot to input commands from the human. Jansen and Herndon (1990) have
explored architectures of this type using robots equipped with joint torque sensors.

In addition to having local force feedback on both robots, it is conceptually desirable
to have a symmetric system in which force information is communicated in both directions.
Bilateral impedance control is the most general extension of these ideas. In this new
architecture, impedance is modulated at both ends of the system.

1.3.4 Bilateral Impedance Control

Figure 1.6 is the block diagram for the proposed bilateral impedance control
architecture. The central difference between this new control method and previous
architectures is that interaction forces are used as the communication signals between the
master and the slave. The communication of forces within the system is regulated by the H
matrix. This matrix permits the arbitrary specification of system performance.

Hannaford (1989) proposed a bilateral impedance control architecture that employs
estimators to predict the dynamic behavior of the human and the environment. The bilateral
impedance control architecture proposed here does not require complex estimators, and it
allows a more general specification of performance characteristics.



Suppose that both the master and the slave robots are initially at rest with no forces
imposed on the system. Then uy, Uy, U, and ey, are all zero. Now, if the human decides to
move her hand, uy, becomes nonzero, and the master robot starts to move. This motion isa
result of the interaction force between the master and the human. Even though the
interaction force may be very large, the master robot motion will be small if the sensitivity
S, is small. In other words, the human may not have enough strength to overcome the
master robot's primary control loop.

To increase the human's effective strength, the apparent sensitivity of the master
robot is increased by measuring the interaction force, f,, and using it as an input to the
master primary control loop. The interaction force is modified by the compensator Hyy
which produces as its output the master input command, ug,. At this point, there are no
restrictions placed on either the structure or size of the compensator. Note that Gp,Hy; acts
in parallel to S,;,, and thus has the effect of changing the apparent sensitivity of the master
robot. The master's apparent sensitivity can be increased by choosing a large gain for Hy;.
This is equivalent to reducing the master impedance.

The impedance of the slave robot is controlled in a similar manner to that of the
master robot. The force imposed on the slave robot by the environment, f,, is measured and
used as an input command to the slave primary control loop. The environmental interaction
force is modified by the compensator Hy, which produces as its output the slave input
command, ug. This compensator generates compliance in the slave robot. Compliance is
necessary for system stability, and it prevents the build up of large contact forces when the
slave encounters a rigid surface (Kazerooni 1989).

The measured interaction forces f,, and f; are also used as the communication
signals between the master and the slave. The bilateral communication is regulated by the
two compensators H;, and Hy;. The master interaction force fr, is used to drive the slave
robot after passing through the compensator Hpy. This compensator transmits information
in the forward direction from the master to the slave, and thus couples the motions of the
two robots. The slave interaction force f is used to drive the master robot after passing
through the compensator Hy,. This compensator transmits information in the reverse
direction from the slave to the master, and thus provides force reflection.

The compensators Hyj, Hyy, Hp;, and Hyy make up the elements of the matrix H.
By proper selection of these four elements, the system designers can achieve desired
performance characteristics. However, the designers do not have complete freedom in
choosing the structure and magnitude of H. The closed-loop system of Figure 1.6 must
remain stable for any chosen value of H.



1.4 Areas of Research

The research will be done in two phases. In the first phase, the theoretical basis for
performance and stability will be developed. In the second phase, the predictions of theory
will be experimentally verified on a multi-degreé-of-freedom telemanipulator. The main
areas of research are outlined in the following sections.

1.4.1 Performance

The ideal performance of a telerobotic system can be expressed in many ways. One
way is to strive for a completely transparent interface between the human operator and the
environment. If such a system could be attained, the operator would experience the same
sensations as if she were actually present at the remote location. This may not always be
desirable, however. For example, suppose that the telerobotic system is used to maneuver a
large object through an arbitrary trajectory. Inertial, centrifugal, coriolis, and gravitational
forces will be imposed on the slave. It seems reasonable to mask the dynamic behavior of
the load through the design of appropriate controllers so that the human feels scaled-down
values of these forces. In another example, suppose that the slave is holding a pneumatic
jack hammer. The objective is not only to decrease the amount of force transferred to the
human arm, but also to filter the forces so that the human feels only the low frequency
components. These examples illustrate that in the most general case, it should be possible
to specify any desired relationship between the master and slave forces.

In addition, it should be possible to specify a desired relationship between the
master and slave positions. For example, the slave position could be a scaled-down version
of the master position to allow greater precision in maneuvering. Thus, in general, it is
necessary to shape the relationships between the forces and the positions at both ends of the
system such that

£, = Ry(f,,) (1.5)
¥s=Ry(ym) (1.6)

where the functions R¢ and Ry represent the desired relationships.

The performance of the telerobotic system can be characterized by four state
variables. These are the forces f,,, and f; and the positions yy, and y,. If any one of the state

variables is chosen to be independent, then the remaining three variables become dependent.



This means that three independent relationships are required to relate the three dependent
variables to the independent variable. This concept is illustrated in Figure 1.7, where lines
connecting the state variables indicate possible relationships.

Three independent relationships are necessary to relate the four state variables. Two
of these relationships are given by equations 1.5 and 1.6. A third relationship must be
specified that relates either fy, and yp,, or fg and y.3 For the control architecture of Figure
1.6, it turns out that the relationship between the slave variables must be specified to insure
system stability. Therefore, the necessary third equation is

fs=Zg(ys) 1.7

where Z is the slave impedance.

The three parameters Ry, Ry, and Zg completely describe the system performance.
These parameters are independent, and thus can be arbitrarily specified by the designers to
achieve desired performance characteristics. Other sets of three parameters can also be used
to describe system performance, as long as the parameters are independent. For example,
Z,,, Z,, and R¢ constitute such a set.

The performance parameters are fundamentally related to the elements in the H
matrix. One of the primary objectives of the research is to design the compensators inH
such that the desired performance characteristics are realized. First, the performance
parameters will be expressed in terms of the system variables. The designers specify values
for the performance parameters, and these expressions can then be solved for Hyi, Hi2,
Hj1, and Hpp. This method will be used to determine the relative magnitudes of the
compensators.

The structure of the compensators will be chosen to modulate the robot impedance.
It will be shown that when a constant gain is used, a stiffness impedance results where the
interaction force is proportional to position. When an integrator is used, the force is
proportional to velocity, and a damping impedance is obtained. The impedance can be
adjusted to suit the requirements of the task. For example, inserting a peg into a hole
requires a large impedance along the axial direction, and a small impedance along the radial
direction (Kazerooni et al. 1986). Various structures for the compensators will be
investigated in the research program.

3Note that it is theoretically possible to specify a relationship between ym and fg,
or between fy, and y;. However, these relationships do not have any physical
significance.



1.4.2 Stability

Another goal of the research effort is to determine the conditions which are
sufficient to guarantee stability for the overall telerobotic system, including the human and
the environment. The system designers select the performance parameters that dictate
specific values for the H matrix. This implies that the performance criteria may conflict with
the conditions for system stability. In other words, there is a trade-off between performance
and stability. The goal is to arrive at a set of conditions on H such that closed-loop stability
is guaranteed.

The stability analysis will be based on unstructured models of the system
components. The advantage of this approach is that dynamic behavior of the system can be
represented in a very general form. There is no need to model the rigid body and actuator
dynamics of a particular manipulator with transfer functions. Thus, the resulting stability
conditions are universally valid.

Two mathematical techniques will be used in the stability analysis. These are the
Small Gain Theorem and the Multivariable Nyquist Criteria. The Small Gain Theorem will
be used to arrive at a general stability condition that is equally valid for linear as well as
nonlinear systems (Vidyasagar and Desoer 1975, Vidyasagar 1978). The Multivariable
Nyquist Criteria will be used for the special case of linear systems with transfer function
matrix operators (Lehtomaki et al. 1981). The linear theory best illustrates the roles of
robot sensitivity and environment dynamics on overall system stability.

1.4.3 Robustness

The performance of the telerobotic system must be robust to uncertainties in the
dynamic model used to design the H matrix. Modeling uncertainties fall into two broad
classes. The first class consists of uncertainties that affect system performance at all
frequencies. Variations in the robot inertia matrix and link geometry are examples of this
type of uncertainty. The second class consists of unmodeled dynamics that affect
performance only at high frequencies. The bending and torsional modes of the robot links
are examples of this type of uncertainty (Kazerooni et al. 1986).

Performance is constant over a range of frequencies known as the bandwidth. The
bandwidth determines the allowable frequency range for system operation, and
consequently the speed of response. The maximum attainable bandwidth of the telerobotic
system is limited by the dynamics of the human operator (Sheridan and Ferrell 1974). The
unmodeled structural dynamics generally appear at frequencies greater than the maximum
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attainable bandwidth, so their effect on overall system performance is usually negligible.
Therefore, only modeling uncertainties of the first class will be investigated.

Robustness of the control architecture will be demonstrated by relating deviations in
the specified performance characteristics to uncertainties in the dynamic model. The
magnitude of acceptable modeling uncertainties will be determined from the measured
frequency response of the performance parameters Ry, Ry, and Zg, The ARX method of
system identification will be used to derive the frequency response from observed input-
output behavior (Ljung 1987).

1.4.4 Bond Graph Modeling

Other investigators have analyzed the theoretical performance of several telerobotic
control architectures with two-port network models. Network models express the system
dynamics in terms of analogous electrical circuit components. Most of this work has
concentrated on two methods of control: the classical position error architecture and the
forward flow architecture.

Raju et al. (1989) developed a two-port model of the classical position-error based
teleoperator using an impedance matrix formulation. Hannaford (1989) used a hybrid
parameter formulation to analyze both the classical and the forward flow architectures.
Anderson (1989) used a passive Hilbert network approach in conjunction with transmission
line theory to model communication time delay.

In order to relate the proposed research to previous work, the control architecture of
Figure 1.6 will be described with a bond graph model. Bond graphs are a convenient
notation for representing the flow of energy and information in any physical system. The
bond graph of the telerobotic system will be used to illustrate how power is transformed,
stored, and dissipated. In addition, the bond graph will be used to show why only three
performance parameters can be specified simultaneously.

1.5 Experimental Verification

Much of the past work in telerobotic control has relied on simulation to verify the
predictions of theory. The few experimental studies that have been done utilized one-
degree-of-freedom manipulators because of their relative simplicity. Almost no attention
has been given to the implementation of new control strategies on multi-degree-of-freedom
telemanipulators. This is due to two factors: the additional complexity involved and the
lack of available hardware. In order to fill this gap in experimental practice, the bilateral

11



impedance control architecture of Figure 1.6 will be implemented on a manipulator having
seven degrees of freedom.

The theoretical predictions for performance and stability will be compared to
experimental results. First, values will be determined for the system variables that govemn
the dynamic behavior of the human arm, the robots, and the environment. These values will
be used in the design of the H matrix. Next, by tailoring the H matrix, the system
performance characteristics will be arbitrarily specified. The force ratio, the position ratio,
and the robot impedances will be measured and compared to their desired values. The
frequency response of the performance parameters will be obtained to demonstrate
robustness of the control architecture to modeling uncertainties. Finally, the stability
conditions will be verified by establishing bounds on the robot impedances for which the
system remains stable.

12



master

human

Figure 1.1:

slave

environment

Elements of a Telerobotic System

13



Figure 1.2:

Figure 1.3:

NNNNNNNS

Interaction with a Compliant Environment

Interaction with an Inertial Environment

14



135

L] E
> >
IIIIIII I— q'lllll-lll..ll-lllll
I (. J
o | I @
| |
I |
| |
—0 | [
| [
IIIIIIII | Lo e e o e e e
_E JE - . - M
IIIIII ~l
c | |
oM REI
I ] i
| I .
s | ! =

Position Error Control Architecture

Figure 1.4:



16

[ 1]
>
3
m w
,SS?

U |
>l r————- a®
| lo
e %.m
I ) b=
I = IS

L e

Forward Flow Control Architecture

Figure 1.5:



17

r |
_ _
R I
1L _
| I
I |
' ] _
I I
I d
> == |
I I
T w JAN_
| I
l N
Lo e e — R |

slave

Bilateral Impedance Control Architecture

Figure 1.6:



master impedance

force ratio R AV R position ratio

slave impedance

Figure 1.7:  State Variable Relationships for
a Telerobotic System

18



19

Chapter 2
PERFORMANCE PARAMETERS

2.1 Introduction

The performance of a telerobotic system can be completely described by a set of
three independent parameters. In this chapter, the equations that express the performance
parameters in terms of system variables will be derived for the bilateral impedance control
architecture. It will be shown that the performance parameters are fundamentally related to
the structure of the H matrix.

2.2 Force Ratio

The performance parameter that relates the forces acting on the master and slave
robots is known as the force ratio. For a single degree-of-freedom, it is defined as

Rp= 3 2.1

For many tasks, it is desirable to specify the force ratio. This enables the human operator to
exert large forces with the slave robot by applying small forces to the master robot. The
force ratio is specified by selecting the relative magnitudes of the elements in the H matrix.
The expression that relates the force ratio to the H matrix and other system variables will be
derived next.

The following equations can be obtained from the block diagram of Figure 1.6:

fs = fext - Eys 2.2)
ys = Ggug + Ssfs 2.3)
us = H21fm + Hoofs (2.4)

Equation 2.2 is the dynamic model of the environment, equation 2.3 is the dynamic model
of the slave robot, and equation 2.4 is the input command to the slave stabilizing control

system.



Substituting equation 2.4 into equation 2.3 and collecting terms yields

ys = (GsHaDfm + (GsH22 + So)f 2.5)
Substituting equation 2.5 into equation 2.2 gives

fs = fext - E[(GsH21)fm + (GsH22 + S5)fs)
Rearranging

[1 + (GgH22 + Sg)EIfs = fext - (GsH21E)fm

Only an independent source of effort can impose external forces on the slave robot.

All other forces acting on the slave result from the environmental dynamics, E. Thus, itisa
reasonable assumption in most cases that fex; = 0. Making this assumption in the previous

equation yields
tfim T+ (gssll-lizzzl E S9E (2.6)
By defining the two admittances
P21 = GsHzy Q.7)
Py = GgHpp + S 2.8)

equation 2.6 can be written as

f PoE
=8 _ _
£ = "T+PyE 2.9)

The force ratio depends on the dynamics of the environment, and on the relationship
between two elements in the H matrix. The compensator Hy) filters the master force, while
the compensator H; filters the slave force. The outputs of both compensators are used to
drive the slave robot. Hp; couples the motion of the slave robot to that of the master robot.
Hy) determines the compliance of the slave robot to forces exerted on it by the environment.
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The force ratio can be arbitrarily specified by selecting the relative magnitudes of Hp; and
Hoa.

Note that the force ratio does not depend on Hj2, the element in the H matrix that
governs force reflection. This may seem surprising at first, until it is realized that force
reflection increases the master impedance. As a result, the human must apply a greater force
to move the robot, but the force ratio is unaffected.

2.3 Position Ratio

The performance parameter that relates the. positions of the master and slave robots
is known as the position ratio. For a single degree-of-freedom, it is defined as

Ry = ;Y—i (2.10)

Often it is desirable to specify a non-unity value for the position ratio so that the two robots
move in the same direction, but have different amplitudes of motion. This enables the slave
robot to perform small, precise motions in response to large, coarse motions of the master
robot. The position ratio is specified by selecting the relative magnitudes of the elements in
the H matrix. The expression that relates the position ratio to the H matrix and other system
variables will be derived next.

The following equations can be obtained from the block diagram of Figure 1.6:

Y¥m~= Gml]m + Smfm (21 1)

um = Hy1fm + Hiofs (2.12)
Equation 2.11 is the dynamic model of the master robot, and equation 2.12 is the input
command to the master stabilizing control system.

Substituting equation 2.12 into equation 2.11 and collecting terms yields

¥m = (GmH11 + Sm )m + (GmH12)fs (2.13)
Solving for fy

_Ym- (GmHl2)f§
fm = GpHi) + S (2.14)
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Substituting equation 2.14 into equation 2.5 gives

GgH - (GmH12)f,
ys = S Q] Gy + s, 215)

If there are no external forces imposed on the slave, then fex; = 0 and equation 2.2 reduces
to '

fs = ‘EYS (2.16)

Substituting this expression into equation 2.15 and simplifying

GsHaj

Ys _ , 2.17)

ym  (GmH11+Sm)*+[(GmH11+Sm)(GsH22+55)-GmGsH12H21]E
By defining the two admittances

P11 =GmHi1 + Sm (2.18)

P12 = GmH12 (2.19)
and making use of equations 2.7 and 2.8, equation 2.17 can be written as

‘)%‘; " P 1P+ APE 220

where

AP =P11P22 - P12P21 2.21)

In the general case where the slave robot is constrained by the environment, the
position ratio depends on the relative magnitudes of all four elements in the H matrix.
However, when the slave robot is moving freely through space, there are no forces exerted
on it by the environment. In that case, E = 0 and the position ratio becomes

22



Thus, for unconstrained motion, the position ratio depends on the relationship between only
two elements in the H matrix. The compensator Hj; filters the master force, and its output
is used to drive the master robot. Hj; determines the motion of the master robot by
controlling its impedance. The compensator H2 also filters the master force, and its output
is used to drive the slave robot. Hy; couples the motion of the slave robot to that of the
master robot. For unconstrained motion, the position ratio can be arbitrarily specified by
selecting the relative magnitudes of Hj and Ha;.

2.4 Impedance
The performance parameter that relates force and position is known as impedance.

An impedance may be defined at each end of the telerobotic system. For a single degree-of-
freedom, the robot impedances are defined as

Zm= I (2.22)
Ym
f

Zs= v (2.23)

The master impedance Zp, is the impedance that the telerobotic system presents to
the human. It is desirable to specify Zm, to reduce fatigue of the human operator. The slave
impedance Z is the impedance that the telerobotic system presents to the environment. Itis
desirable to specify Zs to insure system stability, and to suit the requirements of the task.
The robot impedances are specified by selecting the relative magnitudes of the elements in
the H matrix.

An expression for the master impedance will be derived first. Substituting equation
2.16 into equation 2.13 yields

¥m = (GmH11 + Sm)fm - (GmH12)Eys (2.24)
Substituting equation 2.16 into equation 2.5 gives
ys = (GsH21)fm - (GsH22 + S5)Eys

Solving for ys
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Ys=T1T%+ ‘(gsHMnf+ SOE (2.25)
Substituting equation 2.25 into equation 2.24 and simplifying
fm _ 1+(GgH22+S5)E (2.26)
ym  (OmH11+Sm)*+[(GmH11+Sm)(GsH22+S5)-GmGsH12H21]E
Equation 2.26 can be written in terms of admittances as
;—I:‘ - pra 2.27)

In the general case, Zy depends not only on the internal dynamics of the telerobotic
system, but also on the impedance of the environment. However, when the slave robot is
moving freely through space, there are no forces exerted on it by the environment. In that
case, E = 0 and equation 2.27 for the master impedance becomes

_ 1
P11

For this special case, the master impedance is determined by a single element in the H
matrix. The compensator Hy filters the master force, and its output is used to drive the
master robot. Because Hjj relates force to position, it governs the robot impedance. For
unconstrained motion, the master impedance can be arbitrarily specified by adjusting Hyj.
An expression for the slave impedance will be derived next. This requires an

impedance model of the human arm. From the block diagram in Figure 1.6, the dynamic

behavior of the human arm is given by
fm = uh - Shym (2.28)

The impedance of the human arm is actively modulated by the central nervous system. Itis
also a function of the arm orientation. However, it is assumed that the human arm presents
a strictly passive impedance to the slave at each instant in time. This instantaneous
impedance can be found by setting up = 0 in equation 2.28. This gives

fm = - Shym (2.29)
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where S, is now a function of many variables such as central nervous system commands,
muscle stiffness, and arm orientation. Substituting equation 2.29 into equation 2.5 yields

¥s = - (GsH21)Shym + (GsH22 + S9)fs (2.30)
Substitﬁting equation 2.29 into equation 2.13 gives
¥m = - (GmH11 + Sm)Shym + (GmH12)fs

Solving for ym

- GpH ) ofs
Ym =13 (GmH11 + Sm)Sh

(2.31)

Substituting equation 2.31 into equation 2.30 and simplifying

fs _ 1+(GmH11+Sm)Sh
¥s (GSH22+SS)+[(GmH1I+Sm)(GsH22+Ss)'GmGsH12H21]Sh

(2.32)

Equation 2.32 can be written in terms of admittances as

fs _ 1+P)1Sy

Vs = P37 + APS (2.33)

In the general case, Z depends on the internal dynamics of the telerobotic system and the
impedance of the human arm. It should be remembered that S, is not a constant, but that it
is a complex function of many variables. The value of Sp at any particular instant must be
estimated from outside of the telerobotic system.

When there is no force reflection from the environment, the slave impedance does
not depend on the human arm dynamics. Since there is no communication from the slave to
the master, the gain of Hy3 is zero. Therefore, P12 = 0 and AP = P11P22. Equation 2.33 for
the slave impedance can then be simplified to

For this special case, the slave impedance is determined by a single element in the H matrix.
The compensator Hp filters the slave force, and its output is used to drive the slave robot.
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Because Hy; relates force to position, it governs the robot impedance. In the absence of
force reflection, the slave impedance can be arbitrarily specified by adjusting H22.

2.5 Independent Parameters

The expressions that relate the performance parameters to system variables are

summarized below:
Rf=- —1—?,%3- 2.9)
Ry= }Tu—Pfkﬁ (2.20)
y A Flﬁ% 2.27)
Z = P—ln%i}ﬁ,s—shﬁ when up = 0 (2.33)
where
P11 =GmH11+ Sm (2.18)
P12 = GpH12 (2.19)
P21 =GsHay 2.7)
P22 = GsHap + Ss (2.8)
AP =P11P22- P12P21 (2.21)

Tt turns out that the first three performance parameters are not independent. This can be
seen by dividing equation 2.20 by equation 2.9

Ry _ 1 + PRE
R~ E(P;) + APE)

Comparing this expression to equation 2.27, it is apparent that
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él!
Ry_.
Ri- E (2.34)

Thus, it is not possible to arbitrarily specify Zp, if Ry and Ry are also selected as
performance parameters. For this reason, the set of three independent performance
parameters must include Z as one of its members. The other two parameters can be chosen
from the remaining variables Ry, Ry, and Zy,.

The slave impedance Zs will always be an independent parameter because it
describes the dynamic behavior of the telerobotic system from the perspective of the
environment. Equation 2.33 was derived by assuming that up = 0. This assumption implies
that the human arm appears to be a passive element. In contrast, the parameters Ry, Ry, and
Zm describe the dynamic behavior of the telerobotic system from the perspective of the
human. Equations 2.9, 2.20, and 2.27 were derived by assuming that foxy = 0. This
assumption implies that the environment appears to be a passive element.

2.6 Structure of the H Matrix

The relationship between the performance parameters and the structure of the H
matrix can be seen more clearly if several approximations are made in the governing
equations. The closed-loop transfer functions of both the master and the slave have the
form

G .o —GpOKE)
ms =T+ Gp(s)K(5)

where Gp(s) is the transfer function of the robot and K(s) is the transfer function of the
primary stabilizing compensator.
The sensitivity functions of both the master and the slave have the form

S o1
ms = T4 Gp(s)K(s)

For good position control, the magnitude of Gp(s)K(s) >> 1. Thus, over the bandwidth
(0, my), the following approximations can be made:
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Gm’s—"‘l
Sm’s"—‘-"o

That is, the closed-loop transfer functions have approximately unity gain, while the
sensitivity functions are negligibly small. Above the frequency o, the magnitude of the

closed-loop transfer function begins to drop off, and the approximations are no longer valid.
However, the system performance within the bandwidth is of primary interest. Using the
approximations in equations 2.5 and 2.13 yields

¥m = H11fm + Hi2fs (2.38)
ys = Ha1fm + Haofs (2.39)
These two equations can be written in matrix form as
ym Hip Hi2 | [fm
= (2.40)
Ys Hz1 H2 fs
Thus, the H matrix can be thought of as a set of relationships between force and position.

The following relationships can be obtained from equation 2.40 by setting one of the force

variables to zero:

Hi =10 -0
Hiz = ¢ fm =
Hzl=¥i £, =0
H:"2=}fis§ f=0

By considering the elements as input-output relationships, the inherent structure of
the H matrix is revealed. Tt can be seen that Hjj controls the master impedance, while H22
controls the slave impedance. Hj2 and Hp; regulate the communication between the robots.
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H 1, controls force reflection since it transmits information from the slave to the master.
H»; controls motion coupling since it transmits information from the master to the slave.
Therefore, the H matrix has the following characteristic structure:

VVZm force reflection

motion coupling 1/Z
2.7 Conclusions

The main advantage of the control architecture in Figure 1.6 is that it allows the
arbitrary specification of desired performance characteristics. System performance can be
described by a set of three independent parameters. To form an independent set, one of
these parameters must be the slave impedance Zs. The equations that relate the performance
parameters to system variables were derived. It was shown that the performance parameters
are fundamentally related to the structure of the H matrix. The H matrix can be designed to
achieve specific values of the performance parameters. The process of H matrix design will
be illustrated with numerous examples during experimental verification.



Chapter 3
STABILITY

3.1 Introduction

The arbitrary specification of desired performance characteristics may conflict with
the requirements for system stability. In other words, there may be a trade-off between
performance and stability. The conditions that are sufficient to guarantee closed-loop
stability will be determined in this chapter. It will be shown that the stability conditions
place limitations on possible structures for the H matrix.

The stability analysis will be based on unstructured models of the system
components. The advantage of this approach is that the dynamic behavior of the system can
be represented in a very general form. The resulting stability conditions are universally
valid, and do not depend on the rigid-body dynamics of a particular manipulator.

The stability of a multivariable telerobotic system will be studied with two methods.
The first method will use the Small Gain Theorem to arrive at a general set of stability
conditions. These general conditions can be applied to linear as well as nonlinear systems.
The second method will use the Multivariable Nyquist Criterion to analyze the stability of
linear systems with transfer function matrix operators. It will be demonstrated that the
stability conditions obtained with this method are a subset of the general conditions. Often
nonlinear systems can be treated as linear systems when the robots move at slow speed. In
addition, the linear theory best illustrates the roles of the human and the environment on
overall system stability.

3.2 Small Gain Theorem

This section presents the mathematical background for the Small Gain Theorem
(Vidyasagar 1978, Vidyasagar and Desoer 1975). This method is used to derive a general
set of stability conditions which can be applied to nonlinear systems.

First, the concept of Lp stability is introduced. An operator V[-] is said to be Lp-
stable if it satisfies the following conditions:

(1) V[ :LE—)LB (3.1)

2) there exist real constants o 2 0 and P such that
I Vie] llp <alliellp+ B (3.2)
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The first condition states that the operator V[-] maps an input in the Lg space to an output in

the LB space. Ann x 1 vector function f(t) exists in the Lg space if its Lp-norm is bounded.

That is, if

l1 £ llp < oo, then f(1) € L,

where Il f llp denotes the Lp-norm of f(t). The Lp-norm is defined as

1
nep=[ LO IFIP dt | for all p & [1, <]

In cases where the Lp-norm is unbounded, a truncated function f(t) can be defined such
that

f(t) 0<t<T
fr(t) =
0 t>T

where T is any finite time. If Il fT lip < oo, then f(t) belongs to the extended LB space

denoted by Lge This definition facilitates the analysis of systems in which the subsystems
are unstable while the entire system may be stable.

The second condition for Lp-stability states that the norm of the output is no larger
than o times the norm of the input plus the offset constant B. The smallest o such that
inequality 3.2 is satisfied is called the gain of operator V[:].

The Small Gain Theorem states the stability condition for the closed-loop system of
Figure 3.1. V is a nonlinear operator that represents the dynamics of the plant and the
primary stabilizing compensator. H is a nonlinear operator that represents the
compensation in the feedback path. It is assumed that the operators V and H are Lp-stable.
That is,

V[e]:Lg—)Lg

I Vie] llp < agll e lip + By (3.3)
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H[f]:LS—)H",

I Hf] Hlp < alt £ llp + B2 (34
Since the output f = V[e], inequality 3.3 can be substituted into inequality 3.4. This gives
Il HV[e] llp < 2ol e llp + o1+ B2 (3.5)

which means that the loop mapping HV[e] is Lp-stable. From Figure 3.1, the error signal, e,
results from the difference between the input command, r, and the feedback signal. Thus,

e=r-HV[e] (3.6)
Taking the truncated Lp-norms of both sides of equation 3.6 yields
Ierllp=Hrrlp+ I HV[elT lip forallte [0, T] 3.7
Since HV[e] is Lp-stable, inequality 3.5 can be substituted into equation 3.7
et llp <liry llp + c2alieT lip + o2f1+ B2 forallte [0, T] (3.8)
If the gain 0ipar; is less than unity, inequality 3.8 can be rearranged to give

llrplip | o2B1+ B2
lher llp < T- ap0, \————1 e forallte [0, T] 3.9)

Note that the gain o) is the gain of the loop mapping HV[e]. This fact will be important
later.
Now assume that the input command r exists in the LB space. Then Il rllp < oo for

all t e [0, «]. Because r is always bounded, inequality 3.9 shows that e must also be
bounded for all t. Therefore

IIcle<oo for all t € [0, =]

This implies that e belongs to the ! space whenever r belongs to the L space. Thus, the
P P

closed-loop mapping A : r — e satisfies the first condition for Lp-stability
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A[]:Lg - Ly (3.10)
Since ¢ = A[r] and r is always bounded, inequality 3.9 can be written in the form of

inequality 3.2

N Alr] llp<allrllp + B for all t € [0, o] (3.11)

1
C =T oy

B= azBi+ B2

T 1- ooy

Thus, the closed-loop mapping A[-] satisfies the second condition for Lp-stability as well.
Therefore, the closed-loop system of Figure 3.1 is Lp-stable. This constitutes a proof of the
Small Gain Theorem which can be summarized as follows:

If operators V and H are Lp-stable, and the gain of the loop mapping HV([e]
is less than unity, then the closed-loop system is Lp-stable.

The Small Gain Theorem implies that the nonlinear behavior of a stable system can be
bounded by a linear function with a slope less than unity. This concept is illustrated in
Figure 3.2. :

Now the Small Gain Theorem will be used to find the general stability conditions

for the telerobotic system of Figure 1.6. The output of the system is the slave position, ys.
From the block diagram

y¥s = Gsus + Ssfs
It is assumed that the operators Gg and S are Lp-stable. Thus

The electronic input command to the slave is given by



us = H21fm + H2ofs
It is also assumed that the operators Hp1 and Hp are Lp-stable. Thus
lug llp < o2l fm llp + a2l fsllp + B2 (3.13)

Substituting inequality 3.13 into inequality 3.12

I ys llp < otp21ll fm llp + ap2oll f llp + B3 (3.14)
where
op21 = OGsOH21 (3.15)
0p22 = OGs®tH22 + OSs (3.16)
Similarly, from the block diagram

ym = Gmum + Smfm
assuming that the operators Gy and Sy, are Lp-stable

Iym llp < 0Gmll um llp + 0tsmll fm llp + Bg (3.17)
The electronic input command to the master is given by

um = Hy1fm + Hiofs
assuming that the operators H1 and Hy7 are Lp-stable

Hum llp < agnll fm lip + o2l fs lip + Bs (3.18)
Substituting inequality 3.18 into inequality 3.17

Il ym llp < ap11ll fm lip + apr2ll fs llp + Be (3.19)
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where
Op11 = OGmOH11 + USm
0p12 = OGmUH12
The dynamic behavior of the human arm is represented by
fm = uh - Shym
Since the human arm is assumed to be stable
Il fm llp < 1l up llp + atgpll ym lip + B7
Substituting inequality 3.19 into inequality 3.22
Il fm llp < 1up llp + ashoprill fm llp + asnhop2ll fsllp + Bs
If ashop1 < 1, then inequality 3.23 can be rearranged to give

Il up llp OsShop12
1-ashopr1 1 - oshopll

Substituting inequality 3.24 into inequality 3.14

I ys lly < Py 1 +[——————as“°“°‘2°“’2‘
$'P "1 - ashOtpl] P*| 1-oashopil

The force acting on the slave is given by

fs = fext - Eys

+ ap22:| Il fs llp + B1o
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(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

It is not clear if the environment is a stable function of ys. However, the nonlinear mapping

E[-] is assumed to bounded within any finite interval T. Thus, taking the truncated Lp-

norms of both sides of the previous equation



I s llp < fexyT lp + @El ysTllp + B11  forallte [0, T] (3.26)
Substituting inequality 3.26 into inequality 3.25 and rearranging

OShOP120P21
1 - ashopll
QShOP120.P21

1 - ashap1l

op21
Toacsopry ' unT lp + Bra (3.27)

Il ys,T llp <QE [ + U.pzz] Wys,Tllp

+ + 0.1>22] il fext,T "p

In the previous inequality, Il fex; T llp and Il up T lip are bounded inputs to the closed-loop
system. The Small Gain Theorem states that for stability, the gain of the output Il y; lip
must be less than unity, That is,

. [asr.apxzapzl

+ 0O <1
1 - cishOtp1y P22]

Rearranging, the stability condition for the closed-loop system becomes

1 - OLShOLP1 1
> 3.28
P22 - Osh(0P110P22-0p120p21) ~ F (3.28)

This stability condition applies when the slave robot is constrained by the environment. A
second stability condition is necessary when the slave robot is moving freely through space.
The stability condition for unconstrained motion can be found from inequality 3.28 by
setting ag equal to zero. This gives

1 - aghopr) >0

which implies that

1
op11 < Gop (3.29)

Note that this condition was assumed previously in the derivation of inequality 3.24.
Inequalities 3.28 and 3.29 are the general stability conditions for a nonlinear system.
These conditions are related to the H matrix through equations 3.15 and 3.16 and equations
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3.20 and 3.21. It will be shown in the next section that the stability conditions for a linear
system are a subset of the general conditions.

3.3 Multivariable Nyquist Criterion

This section presents the mathematical background for the Multivariable Nyquist
Criterion (Lehtomaki ef al. 1981). This method is used to analyze the stability of linear
systems with transfer function matrix operators.

Figure 3.3 shows a generic closed-loop control system. G(s) is a linear operator
that represents dynamics of the plant and the primary stabilizing compensator. H(s)
represents the compensation in the feedback path. In multivariable systems, the operators
G(s) and H(s) are matrices of transfer functions. Tracing the signal flow path through the
system yields

y =Ge
where it is understood that all operators are matrix functions of s. The error signal, e, is the

difference between the command input, u, and the feedback signal, Hy. Thus, the previous
equation becomes

y = G(u - Hy)
Reananging
I+ GH]y = Gu

Premultiplying both sides by [T + GH]"!
y = [I + GH]'1Gu

Therefore, the closed-loop transfer function matrix which relates the output vector, y, to the

input vector, u, is
GcL = [1 + GHI'1G (3.30)

The inverse of the matrix [I + GH] is given by
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adj[I + GH]

_1_
[I+GHI" = =1 Gal

It follows that the characteristic equation of the system is
I+GHI =0 (3.31)
The determinant Il + GHI can be expressed as a ratio of polynomials in s

_ fcL(s)
IT + GHI = ?%E (3.32)

where fcL(s) is a closed-loop characteristic polynomial, and foL(s) is an open-loop
characteristic polynomial. The roots of fcL(s) are the closed-loop poles of the system,
while the roots of for.(s) are the open-loop poles of the system. For the system to be stable,
the closed-loop poles must lie in the left half of the s-plane. Roots of the characteristic
polynomials that lie in the right half of the s-plane are unstable.

The Nyquist method uses conformal mapping to analyze system stability. For every
point in the right half of the s-plane, there is a corresponding point z = F(s) in the z-plane.
The function F(s) maps the right half of the s-plane into some region of the z-plane. The
right half of the s-plane is bounded by the imaginary axis and a semicircle of infinite radius.
As w ranges from -co to +oo, the boundary of the right half of the s-plane maps into a
contour in the z-plane (see Figure 3.4).

The contour in the z-plane encircles the origin. The number of clockwise
encirclements, N, is given by

N=Z-P (3.33)

where Z and P are the number of zeros and the number of poles of F(s) in the right half of
the s plane, respectively. Equation 3.33 is a property of the conformal mapping, and is
stated without proof. A justification for using this equation is given in Ogata (1970).

Now let F(s) = fcL(s). Since fcL(s) is a polynomial, it has no denominator and
consequently no poles. Therefore, P =0 and equation 3.33 becomes

N(fcL) =ZcL
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where ZcL is number of unstable roots (zeros) of fcL(s). The roots of fcL(s) are the
closed-loop poles of the system. Thus, the number of clockwise encirclements that fcL(s)
makes of the origin is equal to the number of unstable closed-loop poles.

Similarly, let F(s) = foL(s). Since for(s)isa polynomial, it has no denominator and
consequently no poles. Therefore, P = 0 and equation 3.33 becomes

N(foL) = ZoL

where Zo is number of unstable roots (zeros) of foL(s). The roots of foL(s) are the open-
loop poles for the system. Thus, the number of clockwise encirclements that for (s) makes
of the origin is equal to the number of unstable open-loop poles.

The polynomials in equation 3.32 are functions of the complex variable s.
Therefore, their arguments (phase angles) can be subtracted to obtain

N{det[I + GH]} = N(fcL) - N(foL) (3.34)

For stability, the number of unstable closed-loop poles must be zero. That is, N(fcp) = 0.
Since N(for) equals the number of open-loop poles in the right half of the s-plane, equation
3.34 becomes

N{det[I + GH]} = - (number of unstable open-loop poles) (3.35)

where the minus sign indicates encirclement in the counterclockwise direction. Equation
3.35 is the Multivariable Nyquist Stability Criterion, which can be stated as follows:

If the loop transfer function matrix G(s)H(s) has m poles in the right-half of
the s-plane, then for stability the locus det[I + G(jw)H(jw)] must encircle
the origin m times in the counterclockwise direction, as ® varies from -co to +oo.

In analyzing the stability of the telerobotic system, two cases must be considered:
constrained and unconstrained motion. Constrained motion occurs when the slave robot is
interacting with the environment. Unconstrained motion occurs when the slave robot is
moving freely through space. These two cases give rise to two different stability conditions.
The case of constrained motion will be considered first.

The telerobotic control architecture must be reduced to an equivalent loop transfer
function before the Multivariable Nyquist Criterion can be applied. Using matrix operators,



the block diagram in Figure 1.6 can be rearranged to obtain the simplified block diagram
shown in Figure 3.5. A single control loop has been formed by merging the separate
control loops of the master and slave robots. Further simplification is possible by
combining the G, H, and S matrices in Figure 3.5 using the rules of block diagram algebra.
The resulting block diagram is shown in Figure 3.6 where the admittance matrix P is
defined as

P=GH+S (3.36)

From the simplified block diagram, the equivalent loop transfer function is RP. Itis a
sufficient condition for stability that det[I + RP] does not pass through the origin. This
condition guarantees that the contour in the z-plane will always encircle the origin in the
counterclockwise direction. In other words, the origin cannot be encircled if the contour
passes through it. Thus, the Multivariable Nyquist Criterion for the telerobotic system
becomes

det[1+RP]#0 forallw € [0, o] (3.37)

or using equation 3.36 for P

det[ + RGH + RS]#0 forall ® € [0, ] (3.38)

Substituting R, G, H, and S from Figure 3.5 into equation 3.38 for calculation of the
determinant yields

ShEAP+SpP;; +EPyp+120 forallwe [0, ] (3.39)

where the admittances are given by

P12 =GnH12 ' (3.41)
P21 = GgH2j (3.42)

P2y = GsH22 + S¢ (3.43)
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AP = P11P2 - P12P2) (3.44)

For the system to be stable, the left hand side of equation 3.39 must not equal zero. Ifitis
assumed that

ShP11+120 forallwe [0, =] (3.45)

equation 3.39 can be written as

E[Sh AP + P23]

1+ Sh P11+ 1

#0 for all w € {0, o] (3.46)

A sufficient condition to insure the validity of equation 3.46 is

E[Sh AP + P23}
l Sp Py + 1 <1 (3.47)
Rearranging
1+ ShpP11
‘——Pzz ¥ Sy, AP > [El (3.48)

This is the stability condition for constrained motion. Comparing the left hand side of
inequality 3.48 to equation 2.33, it can be seen that the stability condition is really a
limitation on possible values of the slave impedance. That is, for stability

IZgl > |E (3.49)

The slave impedance must be greater than the impedance of the environment. Since Zgisa
performance parameter that can be arbitrarily specified, it is usually possible to stabilize the
system by selecting a sufficiently large value for the slave impedance. There is no conflict
between performance and stability in this case. However, if the slave robot is in contact with
a rigid surface, the slave impedance must be very large to stabilize the system. As E—eo, it
is impossible to specify Zg large enough such that stability of the system is guaranteed.
Thus, there must be some initial compliancy in the environment for the system to be stable.
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Next, the case of unconstrained motion will be considered. In deriving equation
3.46, it was assumed that equation 3.45 must be true. A sufficient condition to insure the
validity of equation 3.45 is

ISh P11l <1 (3.50)
which implies that
Pl < o (3.51)
111 < Sh .

This is the stability condition for unconstrained motion. When the slave robot is moving
freely through space, there are no forces exerted on it by the environment. In that case,
E = 0 and equation 2.27 for the master impedance becomes

1
P11

Comparing the previous equation to the left hand side of inequality 3.51, it can be seen that
the stability condition is really a limitation on possible values of the master impedance. That
is, for stability

1Zenl > ISH whenE=0 (3.52)

The master impedance must be greater than the impedance of the human arm. Since Zp isa
performance parameter that can be arbitrarily specified, there is no conflict between
performance and stability in most cases. However, if the human grips the master robot
tightly, the master impedance must be very large to stabilize the system. As Sp—reo, it is
impossible to specify Zm, large enough such that stability of the system is guaranteed. Thus,
there must be some initial compliancy in the human arm for the system to be stable.
Inequalities 3.48 and 3.51 are the stability conditions for a linear system.
Inequalities 3.28 and 3.29 are a general set of stability conditions expressed in terms of
operator gains. Since no assumptions were made regarding the structure of the operators,
the general stability conditions must be eqxially valid for linear as well as nonlinear systems.
By replacing the nonlinear operator gains with the magnitudes of linear transfer functions, it
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can be shown that inequalities 3.48 and 3.51 result from inequalities 3.28 and 3.29.4 Thus,
the linear stability conditions obtained with the Multivariable Nyquist Criterion are a subset
of the general stability conditions obtained with the Small Gain Theorem.

The linear stability conditions are related to the H matrix through equations 3.40 to
3.44. By specifying the elements in the H matrix, it is possible to influence both the
stability and performance of the telerobotic system.

3.4 Conclusions

It has been shown that the arbitrary specification of performance does not conflict
with the requirements for stability. However, there must be some initial compliance in both
the environment and the human arm for the system to be stable. Two stability conditions
were derived that are equally valid for linear and nonlinear systems. The stability condition
for constrained motion requires that the slave impedance Zs must be greater than the
environmental impedance E. The stability condition for unconstrained motion requires that
the master impedance Zy must be greater than the human arm impedance Sp. Like
performance, the stability conditions are fundamentally related to the structure of the H

matrix.

41t was assumed implicitly that Il -Shym lp < @Sh Il ym llp + B in deriving inequality 3.22, so let aSh =
I-Shl.
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Figure 3.5:  Block Diagram of Bilateral Impedance
Control Architecture in Matrix Form
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Figure 3.6:  Simplified Block Diagram in Matrix Form
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Chapter 4
BOND GRAPH ANALYSIS

4.1 Introduction

Bond graphs are a convenient notation for representing the flow of energy and
information in any physical system. A bond graph model can be used to determine system
state variables, and to formulate the differential equations that govern system dynamics. A
bond graph of the telerobotic system will be constructed from basic elements. This bond
graph will illustrate how power is transferred and dissipated within the system. It will also
be used to show why only three performance parameters can be specified simultaneously.
The theoretical 'background for bond graph analysis will be presented first. Additional
information on this subject can be found in Karnopp and Rosenberg (1975).

A bond graph is a diagram constructed from a small set of ideal elements joined
together by bonds. The elements represent subsystems or parts of the total system. The
bonds represent the connections where power can flow between the subsystems. Figure 4.1
is the generalized bond graph of a system consisting of two subsystems. Power is flowing
out of subsystem A and into subsystem B. The direction of power transfer is indicated by a
half arrow on the bond. There are two power variables associated with each bond: an effort
variable, e, and a flow variable, f. It is convention to place the effort variable above or to the
left of the bond, and the flow variable below or to the right of the bond. The product of the
effort variable and the flow variable is the power flowing between the two subsystems:

P(t) = e(t) f(t) _ 4.1)

In mechanical systems, the effort is a force and the flow is a velocity. In electrical systems,
the effort is a voltage and the flow is a current.

The two power variables always occur as an input-output pair. If one variable isan
input, then the other must be an output. For subsystem A, the flow is an input signal and
the effort is an output signal. Inputs and outputs are denoted on the bond graph by a causal
stroke, which is a short perpendicular line at one end of the bond. The effort signal is
always directed toward the causal stroke. Note that the causal stroke is independent of the
direction of power transfer indicated by the half arrow.

Two other variables are important in describing the behavior of dynamic systems.
These so-called energy variables are the momentum p and the displacement q. The
momentum is defined as the time integral of an effort
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p(t) = J" e(t) dt 4.2)

Similarly, the displacement is defined as the time integral of a flow

q(t) = J" f(t) dt (4.3)

The total energy E which has passed into or out of a subsystem in time t is given by the time
integral of the instantaneous power. That s

E(t) = J-‘ P(t) dt = I‘ e(®) f(t) dt 4.9)

Alternate forms of the energy equation will be derived in the next section using the energy
variables p and q.

In many cases, information signals are transmitted among the system components at
zero power. For example, an ideal sensor extracts information about a system variable
without disturbing the system to which it is attached. The transmission of information
without the corresponding flow of power is indicated on the bond graph by a full arrow.
Bonds that only transmit information are known as active bonds. Active bonds are useful in
the modeling of automatic control systems in which sensors are essential devices.

Only a few basic types of elements are required to model the physical effects of
complex systems. These elements will be defined next.

4.2 Basic Elements

The basic elements are idealized mathematical models of real components in the
system. These elements are interconnected at one or more ports where power flows
between subsystems. An element with one port or connection to the rest of the system is
called a 1-port element. Similarly, an element with two ports or connections is called a 2-
port element. There are also 3-port junction elements that interconnect the other elements to
form systems and subsystems. Each of these basic element types will be discussed in turn,
starting with the 1-ports.

The resistor is a 1-port element in which the effort and flow variables are related by
a static function. If this function is linear, the resistance R is defined by the following
constitutive equation:
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e=Rf 7 4.5)

The resistor dissipates energy. It can be used to model such devices as a mechanical
damper or an electrical resistor. The resistor has the following bond graph symbol:

[
——LR

f

By convention, the half arrow on the bond graph points toward the resistor to indicate that
power is flowing into the element.

The capacitor is a 1-port element in which an effort and a displacement are related
by a static function. If this function is linear, the capacitance C is defined by the following
constitutive equation:

q=Ce (4.6)

The capacitor stores energy, and this energy can be recovered without loss. An expression
for the energy stored in the capacitor at any time t can be obtained by using the differential
form of equation 4.3 (dq = f dt) in equation 4.4. This gives

E@:memm+m 47

where Ej is the initial stored energy att=0. Sinceeisa function of q for the capacitor, the
stored energy can also be written as

E@= [ 3 e@da+Eo @)

Usually, it is convenient to define Eg to be zero whene =0 and q = qo- The capacitor can
be used to model such devices as a spring, an electrical capacitor, or a hydraulic
accumulator. The capacitor has the following bond graph symbol:



(4]

f=q

In the 1-port inertia element, a momentum and a flow are related by a static function.
If this function is linear, the inertance I is defined by the following constitutive equation:

p=If (4.9)

Like the capacitor, the inertia stores energy which can be returned to the system. An
expression for the energy stored in the inertia can be found by using the differential form of
equation 4.2 (dp = e dt) in equation 4.4. This gives

E(t) = j(; f(t) dp(t) + Eg (4.10)
Since f is a function of p for the inertia, the stored energy can also be written as

E(p) = J;’O f(p) dp + Eo 4.11)

Usually, it is convenient to define Eg to be zero when f = 0 and p = po- The inertia can be
used to model a mass or an electrical inductor. The inertia has the following bond graph
symbol:

In mechanical systems, the energy associated with an inertia is called kinetic energy, while
the energy associated with a capacitor is called potential energy. In an electrical system,
these two forms of stored energy are called magnetic and electric energy, respectively.

The effort source and the flow source are 1-port elements that supply power. The
effort source maintains a constant effort that is independent of the flow. The effort source
can be used to model an electric battery or a mechanical actuator. Its bond graph symbol is
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Note that the half arrow is directed away from the effort source to indicate that power is
being supplied.

The flow source maintains a constant flow that is independent of the effort. A flow
source can be used to model a pump or an electric motor. Its bond graph symbol is

S¢
f

In modeling automatic control systems, it is often necessary to utilize sources whose
output depends on some other variable in the system. In these cases, an effort or flow
source is paired with an active bond that transmits the control signal. The resulting elements
are known as controlled sources.

In the 2-port elements, the power flowing into one port must equal the power
flowing out of the other port. Power is conserved such that

eifi=erf? (4.12)
The transformer is a 2-port element whose constitutive equations are

€1 =me3 (4.13)
mfy=1£;

where the parameter m is known as the transformer modulus. The transformer can be used
to model devices such as a gear train or a hydraulic ram. Its bond graph symbol is

€1 m )
fl f2

The power sign convention indicates that power flows through the transformer.



The gyrator is another 2-port element that satisfies the conservation of power
dictated by equation 4.12. However, its constitutive equations relate an effort at one port to
a flow at the other port:

e1=rfy (4.14)
rfi=ez

where r is called the gyrator modulus. A gyroscope is an example of a mechanical gyrator.
Its speed of precession depends on the magnitude of the externally applied force. The bond
graph symbol for a gyrator is

el » T 62

f1 f

Like the transformer, a through power sign convention is established.

The 1 and 2-port elements are joined together by 3-port junction elements. There
are two types of junction elements: a O-junction and a 1-junction. The O-junction connects
elements having a common effort. Its bond graph symbol is

€2 f
€1 €3
—_— 0 -
fi f3

All power signs are directed inward by convention. The constitutive equations for the 0-

junction are
ej=ex=¢e3 (4.15)
fi+fra+f3=0

In other words, the effort on all bonds is identical, and the sum of all flows entering the
junction is zero. Taken together, these two equations imply that the power on all bonds

must sum to zero. That is
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e1fiterfr+esfz3=0 (4.16)

This means that if power is flowing into the 0-junction on two of the ports, it must be
flowing out at the third.
’ The 1-junction connects elements having a common flow. Its bond graph symbol is

e, | &
€1 €3
I O R T—
fi fa

The power signs are directed inward by convention. The constitutive equations for the 1-

junction are
e1+er+e3=0 4.17)
fi=fh=f3

In other words, the efforts on all bonds must sum to zero, and the flow on all bonds is
identical. Taken together, these two equations imply that the power on all bonds must sum
to zero. This is the same condition stated in equation 4.16 for the O-junction.

An electrical circuit provides a good analogy for the junction elements. The O-
junction can be thought of as a parallel connection in which all elements have a common
voltage. Similarly, the 1-junction can be thought of as a series connection in which all
elements have a common current.

The basic elements are summarized in Table 4.1. In addition, a pseudo-element
called an impedance can be defined. An impedance is used to model the composite effect of
a whole subsystem. The subsystem may consist of cncrgy'storagc elements and energy
dissipation elements. However, the exact structure of the subsystem is unknown. At a port,
the impedance relates an effort and a flow such that

e=2Zf (4.18)

where Z is a complex function. The bond graph symbol for an impedance is

53



An impedance is not a basic element. Rather, it may incorporate several basic elements such
as resistors, capacitors, and inertias. An impedance is merely a notational convenience for
representing unstructured subsystems. It accurately models the input-output properties at a
port, but it obscures the details of the subsystem'’s internal structure.

Table 4.1
Basic Elements
Constitutive
Element Type Symbol Equation
Resistor 1-port R e=Rf
Capacitor 1-port C qg=Ce
Inertia 1-port I p=If
Effort Source 1-port Se
Flow Source 1-port St
Transformer 2-port TF e1=me2
mfy =17
Gyrator 2-port GY e1=rf2
rfi=e
0-junction 3-port 0 e1=¢€2=¢3
fi+fr+f3=0
1-junction 3-port 1 ej+er+e3=0

fi=fr=1f3
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4.3 Causality

The concept of input-output causality was introduced previously. The causal stroke
on the bond graph indicates the direction of the effort signal. The basic elements are
constrained to have different causal properties. By applying these rules of causality to the
bond graph, it is possible to predict fundamental properties of the system.

The allowable causalities of the effort and flow sources can be determined from their
definitions. The effort source imposes an effort upon the system to which it is connected.
Since the effort signal is always directed toward the causal stroke, the only permissible
causality for the effort source is

5, ——

Similarly, the flow source supplies the system with a flow. Since the effort signal must be
directed in the opposite direction, the only possible causality for the flow source is

8 b——

The resistor can accommodate two possible causalities, depending on whether the
effort is an output or an input. If the effort is an output, the causality and the corresponding
constitutive relationship are

I R e=Rf

On the other hand, if the effort is an input, the causality and the constitutive relationship are

I R f=eR

Note that the input is always on the right hand side of the constitutive equation, while the
output is always on the left hand side. As long as the static function R and its inverse exist,
the resistor does not prefer one causality over the other. Thus, the assignment of causality
is arbitrary for the resistor.

The choice of causality for the capacitor has an important effect on the constitutive
relationship. When the flow is the input to the capacitor, equation 4.6 can be written in

55



integral form as

e= 1/CI fdt : 4.19)

In this case, the capacitor exhibits what is known as integral causality. On the bond graph,
integral causality for the capacitor is indicated by

=

Similarly, when the effort is the input to the capacitor, the constitutive relationship can be
written in derivative form as

f= 91%2 (4.20)

In this case, the capacitor exhibits derivative causality. On the bond graph, derivative
causality for the capacitor is indicated by

— M

The inertia element can also have either integral or derivative causality. Its
constitutive relationship (equation 4.9) can be written in integral form as

f= 1/1_[ edt (4.21)

or in derivative form as

_dq

€==a (4.22)

Integral causality exists when e is the input to the inertia, and derivative causality exists
when f is the input. On the bond graph, integral causality for the inertia is indicated by

—_— g

while derivative causality is indicated by
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while derivative causality is indicated by
I_____L 1

The distinction between integral and derivative causality is important in determining
a fundamental characteristic of the system. The system's order is the number of state
variables necessary to describe its dynamic behavior. It turns out that the number of
independent state variables is equal to the number of energy storage elements with integral
causality. If an energy storage element has derivative causality, it does not contribute any
state variables.

The permissible causalities of the transformer can be determined from equation
4.13. As soon as one of the effort or flow variables has been assigned as the input, the
other effort or flow is constrained to be an output. Thus, the only possible choices for
causality are

F—1 |— —lF ——»

and

The gyrator also has only two possible causalities, which can be determined from
equation 4.14. If the effort on one port is chosen to be an input, then the flow on the other
port must be an output. Thus, the allowable causalities for the gyrator are

—l gy }b—™ and F—~ gy ——>{

For the 0-junction, the efforts on all bonds are equal and the flows must sum to
zero. If the effort on one of the bonds is an input to the junction, then the efforts on all the
other bonds must be outputs. Conversely, if the flows on all bonds except one are inputs,
the flow on the remaining bond must be an output. Thus, a typical permissible causality for
the 0-junction is

__.L|OA__'
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On one bond, the causal stroke is on the end nearest to the 0, while on all the other bonds,
the causal strokes are on the ends away from the 0.

For the 1-junction, the causal considerations are the same as for the O-junction,
except that the roles of the efforts and flows are interchanged. The flows on all bonds in the
1-junction are equal and the efforts must sum to zero. If the flow on one of the bonds is an
input to the junction, then the flows on all the other bonds must be outputs. Conversely, if
the efforts on all bonds except one are inputs, the effort on the remaining bond must be an
output. Thus, a typical permissible causality for the 1-junction is

—5*1|4__

On one bond, the causal stroke is on the end away from the 1, while on all the other bonds,

the causal strokes are on the ends nearest the 1.

Now that causal properties have been determined for each of the basic elements, this
information can be applied to the bond graph. Assigning causality to one element in the
bond graph usually implies a causality for several other elements as well. By extending
these causal implications throughout the graph, it is possible to characterize the physical
validity of the system. Violations of causality mean that there are inconsistencies in the
physical model. The procedure for adding causal strokes to the bond graph will become
apparent when a model of the telerobotic system is constructed.

4.4 Bond Graph of Telerobotic System

A bond graph of the telerobotic system will be assembled by joining smaller bond
graphs of the major subsystems. The essential dynamic behavior of the subsystems will be
modeled with basic elements. The telerobotic system can be divided into four subsystems:
the human arm, the master robot, the slave robot, and the environment.

It is natural to think of the human arm as a source of effort because it supplies
power to the rest of the system. However, some of the effort exerted by the muscles is
expended in moving the arm. Thus, the force applied to the master robot is less than that
commanded by the central nervous system. These ideas are embodied in the dynamic
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equation for the human arm
fm = Uh - Sh Ym (4.23)

This equation can be translated into the bond graph shown in Figure 4.2.

Bond 3 connects the human arm subsystem to the master robot subsystem. The two
subsystems share common power variables. The effort variable is the force exerted on the
master robot, fy,. The flow variable is the velocity of the master robot, ym. For a 1-junction,
the flows on all bonds are equal. In this case, the flows are equal to Ym-

The operator Sp, maps the robot velocity into a force. In effect, Sp relates a flow to
an effort. However, Sy, is an unstructured representation of the human arm sensitivity
function. It may contain energy storage elements in addition to energy dissipation elements.
Therefore, Sy, is modeled as a complex impedance. On the bond graph, the notation Z : Sp
means that the impedance of Z is Sp.

The efforts on all bonds of the 1-junction must sum to zero. Stated another way,
there must be an equality between power inputs and outputs. The input to the 1-junction
comes from the effort source used to model commands from the central nervous system, uh.
Equation 4.23 is satisfied if the efforts on bonds 2 and 3 are outputs. With these
considerations in mind, the reference power directions are assigned to the bond graph. The
input bond has its half arrow directed toward the 1-junction, while the two output bonds
have their half arrows directed away from the junction. It is clear from the bond graph that
power is transferred from the human arm to the master robot. Some of this power is
dissipated or stored by the internal impedance of the arm.

The bond graph for the environment is identical in structure to the bond graph for
the human arm. A 1-junction connects an effort source and an impedance as shown in
Figure 4.3.

The bond graph represents the dynamic equation for the environment:

fs=fext-E }.’s 4.24)

This equation expresses the idea that the total force acting on the slave robot is a
combination of external forces and reaction forces. The external forces are generated by a
source of power that is outside the system. The reaction forces arise from the interaction
between the slave robot and the environment. These forces are a function of the robot's
velocity (or position).
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Bond 3 connects the environment subsystem to the slave robot subsystem. The two
subsystems share common power variables. The effort variable is the force exerted on the
slave robot, fs. The flow variable is the velocity of the slave robot, Ys.

The environmental operator E maps the robot velocity into a reaction force. In
effect, E relatesra flow to an effort. However, the exact form of this relationship is unknown
since E is an unstructured representation of the environmental dynamics. Therefore, E is
modeled as a complex impedance. On the bond graph, the notation Z : E means that the
impedance of Z is E. It is understood that the impedance may incorporate both energy
storage and energy dissipation elements.

The 1-junction implies an equality between power inputs and outputs. The input to
the junction comes from the effort source used to model the external forces, fex;. Equation
4.24 is satisfied if the efforts on bonds 2 and 3 are outputs. The reference power directions
are assigned accordingly.

The bond graph clearly illustrates how power is transferred from the external effort
source to the slave robot. Some of the external power is dissipated or stored by the
impedance of the environment. Usually, the external effort source is set to zero. In this
case, the bond graph for the environment reduces to a passive impedance, with power
flowing in from the slave robot.

Before the master robot can be modeled with a bond graph, it is necessary to
determine its equation of motion. The dynamic equation of a robot manipulator has the
general form

1 =M(0)8 + C(6,6)8 + G(B) (4.25)

A derivation of this equation can be found in Craig (1988). 6, 6, and 0 are vectors of the
joint accelerations, velocities, and positions. T is the joint torque vector. M(0) is the mass
matrix, which is a function of ©. C(0,8) is a matrix of Coriolis and centripetal force terms
that are functions of both 8 and 6. G(8) is a matrix of gravitational force terms that depend
only on 6. }

The master robot is driven by two sources of power: the human arm and the control
system actuators. The human arm exerts a force fm on the end of the master robot. This
force acts in the direction of motion, and produces a torque T, on each joint. The control
system actuators stabilize the robot, and provide force reflection by backdriving the joints.
In addition, the actuators enable the human to overcome the robot's friction and inertia. The
actuator torque T, is assumed to act in the direction of motion, although at times it may

oppose the robot's motion depending on commands received from the control system. The
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total torque on each joint is the sum of the torque applied by the human arm, and the torque
generated by the actuators. Therefore, the equation of motion for the master robot is

T + Ta = M(8)0 + C(8,0)0 + G(0) (4.26)

It is desirable to relate the force applied to end of the robot to the torque developed
at the joints. However, fy, is defined in Cartesian space, while T, is defined in joint space.

Thus, a transformation between spaces is required. The manipulator Jacobian is a matrix
that maps joint velocities into Cartesian velocities. That is

y=J©)0 ' 4.27)

where J is the Jacobian matrix, and y is the velocity of the robot end point. Note thatJis a
function of the joint angles. Thus, the Jacobian must be recalculated continuously as the
robot moves.

The conservation of power requires that the product of efforts and flows be the same
in joint space as it is in Cartesian space. That is

To=1(Ty (4.28)
Substituting equation 4.27 into equation 4.28 gives

To=fTJO (4.29)
Canceling  from both sides of the previous equation and transposing yields

t=JTf (4.30)
Therefore, the transpose of the Jacobian matrix JT is the desired transformation between
force and torque.

Equation 4.30 can be used to replace tm in equation 4.26. The result is

1T £ +Ta = M(©)8 + C(0,0)8 + G(6) (4.31)

The right hand side of equation 4.31 represents the dynamics of the robot arm. The robot



dynamics are a function of 6 and its derivatives. Therefore, it should be possible to model
the dynamics with an operator that maps joint velocity (or position) into torque. Assuming
that this is true, equation 4.31 can be rewritten as

JE, fm + Ta = Zmadm (4.32)

where the impedance Zny, represents the dynamics of the robot arm.> It is apparent from
equation 4.31 that Zp, incorporates damping and inertial terms. The impedance may also
include stiffness terms if the structure of the robot arm is flexible. Equation 4.32 is the
basis for the bond graph model of the master robot.

The bond graph for the master robot is shown in Figure 4.4. Bond 1 connects the
master robot subsystem to the human arm subsystem. The power variables on this bond are
common to both subsystems. The effort is the force exerted on the master robot, f,. The
flow is the velocity of the master robot, ym.

The transformer changes power variables between Cartesian and joint space. The
transformer modulus is J;rll, which is the inverse of the master Jacobian. The constitutive

relationships for the transformer require that

Om =T} ym (4.33)

T DT T = fm

It can be shown that these equations are idcnticai to equations 4.27 and 4.30.

The 1-junction implies an equality between power inputs and outputs. Power is
flowing into the junction on bond 2 from the human arm, and on bond 4 from the actuator.
To satisfy equation 4.32, power must be flowing out on bond 3. The reference power
directions are assigned accordingly. The joint velocity 8., is the flow on all bonds of the 1-
junction. The impedance Zmy, relates the joint velocity to the effort on bond 3. Since all
efforts on the 1-junction must sum to zero, the effort on bond 3 is the total torque Tm + Ta.
The actuator is modeled as a dependent effort source. Its output is regulated by the control
system.

The bond graph illustrates how power is transferred and transformed in the master
robot. Power originating from the human arm is transformed into joint space by the

5 Note that Zpm, is not the same as Zy, which is the overall impedance that the telerobotic system presents
to the human on the master end.
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manipulator Jacobian. There it adds to the power supplied by the control system actuator.
The combined power is dissipated or stored in the impedance of the robot arm.

The dynamic equation of the slave robot can be expressed in the same form as
equation 4.32. However, the sign of the applied torque is reversed because the robot's
motion is constrained by the environment. The control system actuators drive the slave
robot in response to commands from the master robot. The actuator torque T, acts in the
direction of motion. The environment exerts a reaction force fs on the end of the slave
robot. This force opposes the robot motioﬁ, and produces a torque Tg on each joint. The
net torque on each joint is the difference between the torque exerted by the actuators, and the
torque generated by interaction with the environment. Again, it will be assumed that the
dynamics of the robot arm can be represented by an impedance. The dynamic equation of
the slave robot is found by equating the net torque acting on the joints to the robot
dynamics. That is

Ta- TT fs = Zsa 65 (4.34)

where Zs, is the impedance of the robot arm.6 The transpose of the slave Jacobian Jg maps

the end-point force fs into the joint torque Ts. Equation 4.34 is the basis for the bond graph
model of the slave robot. ,

The bond graph for the slave robot is shown in Figure 4.5. Bond 1 connects the
slave robot subsystem to the environmental subsystem. The power variables on this bond
are common to both subsystems. The effort is the interaction force fs, while the flow is the
robot velocity ys. If there are no external forces acting on the slave robot, power flows from
the robot into the environment. The transformer changes power variables between Cartesian
and joint space. The transformer modulus is Js, which is the slave Jacobian. Since the
direction of power flow through the transformer is reversed, the modulus for the master
robot is the inverse of the modulus for the slave robot. It can be shown that the transformer
equations are identical for both robots.

For the 1-junction, the power inputs must equal the power outputs. Power from
the actuator is flowing into the junction on bond 4. To satsfy equation 4.34, power must be
flowing out on bonds 2 and 3. The reference power directions are assigned accordingly.
The joint velocity és is the flow on all bonds of the 1-junction. The impedance Zs, relates

the joint velocity to the effort on bond 3. Since all efforts on the 1-junction must sum to

6 Note that Zsa is not the same as Zg, which is the overall impedance that the telerobotic system presents 10
the environment on the slave end.
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zero, the effort on bond 3 is the net torque T, - Ts. The actuator is modeled as a dependent
effort source. Its output is regulated by the control system.

The bond graph illustrates how power is transferred from the slave robot to the
environment. Power is generated by the control system actuator. Some of this power is
dissipated or stored by the robot impedance. The remainder is available at the robot end
point where it is used to manipulate the environment.

Now the bond graph for the telerobotic system can be assembled by connecting the
bond graphs of the individual subsystems (Figures 4.2 - 4.5). This has been done in Figure
4.6. Assuming that no external forces are acting on the slave robot, the bond graph for the
environment reduces to a passive impedance. Power flows into the environment from the
slave. If external forces were present, the direction of power flow would be reversed, and
the bond graph of the slave robot would be identical to that of the master robot. The
telerobotic system modeled in Figure 4.6 is uncontrolled. That is, no control law has been
implerriented that couples the two robots together. This will be done next.

For both robots, the control system actuators have been modeled as dependent effort
sources. The variable output of these sources is determined by a control law. The robots
are stabilized by position controllers that keep them stationary when the human is not
interacting with the system. A position control law is implemented such that the actuator
torque is given by

Ta = kp(Oref - 8) + ky(Bret - ©) (4.35)

The position error is the difference between the commanded position Brer and the actual
position 8. The position gain kp multiplies the position error, and its value determines the
controller stiffness. Similarly, the velocity error is the difference between the commanded
velocity émf and the actual velocity 8. The velocity gain ky multiplies the velocity error, and
its value determines the controller damping. The controller governed by equation 4.35 is
often called a proportional-derivative or PD controller.

The PD control law can be modeled with the bond graph shown in Figure 4.7. The
input command to the control system is éref. It is represented by a dependent flow source.
The output of the control system is the actuator torque Ta, which is the effort on all bonds of
the O-junction. The actuator drives the robot at the joint velocity 8, which is the flow on
bond 2. The flows on all bonds of the 0-junction must sum to zero. Therefore, the flow on
bond 3 is the velocity error éref - 9. The velocity error is also the flow on all bonds of the 1-
junction. The effort on bond 4 is determined by a resistor. If the resistance is ky, the
constitutive relationship for the resistor implies that
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e4 = ky (Bre - 6) (4.36)

The effort on bond 5 is determined by a capacitor. If the capacitance is 1/kp, the constitutive
relationship for the capacitor implies that

es = kp (Bref - 9) (4.37)

In effect, the capacitor integrates the velocity error to obtain the position error. The 1-
junction implies that the effort on bond 3 is the sum of the efforts on bonds 4 and 5. Since
the effort on bond 3 is also equal to T,, equation 4.35 is satisfied.

The bond graph illustrates how actuator power is stored and dissipated within the
control system. The position gain kp causes the controller to act like an energy storage
element, while the velocity gain ky causes the controller to act like an energy dissipating
element.

The input commands to the control system have not yet been specified. They
depend on the control architecture that is implemented in the computer. For the bilateral
impedance control architecture, the input commands to the robots are governed by the H
matrix. The input command to the master robot um is given by

um = JE T Hyj fm + 5T Hi2 f) (4.38)

while the input command to the slave robot ug is given by

us = JT T Hot fm + pTs Ha2 £5) (4.39)

The interaction forces fm and fs are measured by force sensors located on the end of each
robot. The H matrix filters the interaction forces in the hand coordinate frame. Since the
slave robot may have a different orientation than the master robot, it is necessary to
transform the robot forces into a common coordinate frame before they can be added. The
transformation matrix :T maps the filtered force from each robot into the base coordinate

frame. The base frame is always fixed, and is identical for both robots. The base frame
forces are added in Cartesian space. The transpose of the robot Jacobian JT maps the
combined forces into joint space. '
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There is no transfer of mechanical power between the master and slave robots. The
robots are driven by the electronic input commands to their control systems. The input
commands are calculated in the computer from force sensor measurements. Thus, the
robots are coupled only by information signals that can be represented on the bond graph
with active bonds.

The bond graph of the PD controller can be used to replace the dependent effort
sources in Figure 4.6. The resulting bond graph is shown in Figure 4.8, where the bilateral
impedance control architecture has also been implemented. The active bonds, which have a
full arrow, convey the force signals to the controllers' dependent flow sources. The input
commands to the flow sources are determined from equations 4.38 and 4.39. This is
indicated on the bond graph by the notation S¢ : ércf = up, which means that the reference
input velocity to the master robot is up.

The physical validity of the telerobotic system model can be determined by
assigning causality to the bond graph. The assignment of causality follows several basic
rules. First, causal strokes are assigned to all of the effort and flow sources. The causal
implications are then extended through the bond graph as far as possible, using the causal
constraints of the other basic elements. Second, integral causality is assigned to any one of
the energy storage elements. Again the causal implications are extended through the bond
graph. This process is repeated until all of the energy storage elements have been assigned
a causality. Finally, an arbitrary causality is selected for any unassigned resistor element.
The causal implications of this choice are extended as before. The process is repeated until
all resistors have been assigned a causality. If any bonds are left unassigned at this point,
an arbitrary causality is assigned to them.

The bond graph of the telerobotic system has been augmented with causal strokes in
Figure 4.9. Since no causal constraints are violated, the bond graph must be a physically
consistent model of the telerobotic system. The system's order can be determined by
examining the causality of the energy storage elements. In the human arm, the energy
storage elements have not been modeled explicitly. However, it will be assumed that the
impedance S, incorporates a capacitor which stores potential energy, and an inertia which
stores kinetic energy. If the impedance is replaced by a capacitor, the causal stroke on bond
2 indicates that this element will have integral causality. Similarly, if the impedance is
replaced by an inertia, the causal stroke indicates that this element will have derivative
causality. Only energy storage elements with integral causality can contribute to the
system's order. Therefore, the capacitor is an independent energy storage element, but not
the inertia. The capacitor represents the stiffness of the human arm.

In the master robot, the impedance Zpm, is assumed to incorporate an inertia that
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represents the robot's mass matrix M(6). There is no stiffness associated with the
impedance because the robot is modeled as a rigid structure. The causal stroke on bond 5
indicates that the inertia has integral causality. Thus, it is an independent energy storage
element. In contrast, the inertia of the human arm is a dependent element. This means that
the kinetic energy of the human arm depends on some other element in the system. That
element must be the master robot since its inertia is independent. This reasoning makes
sense intuitively because the human arm is in intimate contact with the master robot. Itis
not possible to change the kinetic energy of the robot without changing the kinetic energy of
the human arm.

Energy can also be stored in the control system. The causal stroke on bond 8
indicates that the capacitor has integral causality. Thus, the control system acts like an
independent energy storage element. Potential energy is stored in the stiffness of the PD
controller.

In the slave robot, the impedance Zg, is assumed to incorporate an inertia that
represents the robot's mass matrix. The causal stroke on bond 16 indicates that the inertia
has integral causality. Thus, it is an independent energy storage element. The
environmental impedance E is assumed to incorporate a capacitor and an inertia. The
capacitor corresponds to the stiffness of the environment, while the inertia represents the
environment's mass. If E is replaced by a capacitor, the causal stroke on bond 18 indicates
that it will have integral causality. If E is replaced by an inertia, it will have derivative
causality. Therefore, the potential energy stored in the stiffness is independent, but the
kinetic energy stored in the inertia depends on some other element in the system. That
element must the slave robot since its inertia is independent. This reasoning makes sense
intuitively because the slave robot and the environment are in contact. It is not possible to
change the energy of one subsystem without affecting the energy of the other.

The order of the telerobotic system is the number of state variables required to
describe its dynamic behavior. The energy variables associated with the independent
storage elements are selected as state variables. The energy variable for a capacitor is the
displacement q, while the energy variable for an inertia is the momentum p. From the bond
graph, the state variables are
( h

Ym
o
X=Y Ag (4.40)

Mg
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where A is the position error Bref - 8, and M is the robot mass matrix. There are six
independent energy storage elements. Therefore, the order of the telerobotic system is six.

Finally, bond graph analysis will be used to prove that only three performance
parameters can be specified simultaneously. A simplified bond graph of the telerobotic
system is shown in Figure 4.10. The human arm is modeled as an independent effort
source that exerts a force f on the master robot. From the perspective of the human, the
telerobotic system acts like an impedance Zg. This impedance relates the applied force fm
to the position of the master robot ym. An active bond transmits force information from the
master robot to the slave robot. The slave robot is modeled as a dependent effort source.
The output of this dependent source is the slave force f,, and it is regulated by the force ratio
R¢. The force ratio depends on the dynamics of the environment. From the perspective of
the environment, the telerobotic system acts like an impedance Zs. This impedance is a
performance parameter that relates the slave force fs to the slave position ys. If Zs is
connected to the dependent effort source, the flow on bond 2 is specified to be ys. At this
point, the efforts and flows on all bonds have been determined by specifying three
performance parameters: Zm, Rf, and Zs.

The physical validity of the model can be tested by assigning causality to the bond
graph. The causal strokes indicate that effort signals are directed away from the effort
sources. This is consistent with the definitions of the sources. Since no causal constraints
have been violated, it is possible to specify three performance parameters simultaneously.

Now a fourth perforrhance parameter will be specified to see how causality is
affected. The position ratio Ry relates the positions> of the master and slave robots. In
Figure 4.11, a second active bond transmits position information from the master robot to
the slave robot. A dependent flow source has been added to the slave side of the telerobotic
system. The output of this dependent source is the slave position ys, and it is regulated by
the position ratio Ry.

Causality is assigned to the flow source consistent with its definition. The causal
stroke indicates that the effort signal is directed toward the flow source. Since f; is the
output of the dependent effort source on bond 2, ys must be the input. However, causality
indicates that ys is also the output from the dependent flow source on bond 3. Itis not
possible for ys to be both an input and an output at the same time. Therefore, causality is
violated, and too many performance parameters have been specified.
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4.5 Conclusions

A bond graph model of the telerobotic system was constructed from basic elements.
This model illustrates how power is transferred and dissipated within the system. Power is
generated by the human arm and the control system actuators. The human arm is an
independent source of effort, while the actuators are dependent sources of effort. There is
no transfer of power between master and slave robots. Force signals are exchanged through
active bonds that only transmit information. The power supplied from the effort sources is
dissipated by damping impedances in the human arm, the robots and their stabilizing
controllers, and the environment.

The bond graph also shows how the total system energy is distributed. Potential
energy is stored in the human arm, the environment, and the robot control systems. Kinetic
energy is associated with the motion of the robots. The independent energy storage
elements were used to determine the system's order. It was found that the telerobotic
system has an order of six.

Causality was assigned to the bond graph to check the physical validity of the
control architecture. The implications of causality were also used to prove that no more than
three performance parameters can be specified simultaneously.
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Chapter §
EXPERIMENTAL VERIFICATION

5.1 Introduction

The theoretical predictions for performance and stability will be experimentally
verified by implementing the bilateral impedance control architecture on a multi-degree-of-
freedom telemanipulator. Experiments will be performed in four main areas.

First, static values will be determined for the system variables that govern the
dynamic behavior of the robots, the human arm, and the environment. These values will be
used in later experiments to design the H matrix.

Second, by tailoring the H matrix, the system performance characteristics will be
arbitrarily specified. The performance parameters will be measured and compared with their
desired values. The master robot impedance will be modulated to produce stiffness and
damping. The position ratio will be varied in two degrees-of-freedom. The force ratio will
be adjusted for interactions with a compliant environment. It will be shown that three
performance parameters can be specified simultaneously.

Third, the frequency response of the performance parameters will be obtained to
demonstrate robustness of the control architecture to modeling uncertainties. The frequency
response will be calculated from an ARX dynamic model found through system
identification.

Finally, the stability conditions will be verified by establishing lower bounds on the
robot impedances for which the system remains stable. All of these experiments will be
carried out on the NASA Laboratory Telerobotic Manipulator which is described below.

5.2 NASA Laboratory Telerobotic Manipulator

The NASA Laboratory Telerobotic Manipulator (LTM) was designed for ground-
based research on the future application of telerobotic systems in space. The LTM is a
bilateral, non-direct drive telemanipulator that has two pairs of master and slave arms. The
robot arms are arranged in an anthropomorphic configuration as shown in Figure 5.1. Each
arm has a shoulder, an elbow, and a wrist with common joint assemblies. All joints are
capable of moving in both pitch and yaw. The wrist joint has an additional degree of
freedom in roll. Altogether, each arm of the LTM has seven degrees of freedom.

The master and slave robots are kinematically identical. However, the slave robot
has larger joint assemblies that can supply a greater output torque. The human operator
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stands between the arms of the master robot. She grips a control handle attached to the end
of the robot's wrist. The slave robot has a parallel-jaw end-effector for grasping remote
objects. Both robots are mechanically counterbalanced to offset the force of gravity.

The pitch-yaw joint assembly consists of a differential traction drive mechanism
powered by two DC servomotors. When the motors rotate in the same direction, the joint
rotates in yaw. When the motors rotate in opposite directions, the joint rotates in pitch.
Each motor is equipped with an antibacklash gear reducer, a permanent magnet brake, an
optical encoder, a tachometer, and a torque sensor. Resolvers are mounted on both joint
axes to measure absolute position (Herndon et al. 1988).

The LTM is controlled by multiple processors operating in parallel. Figure 5.2 is a
schematic diagram of the computer hardware. A joint processor controls the acquistion of
sensor data from each joint. The joint processors are imbedded in the robot arms, and they
communicate with the main rack through fiber optics. The main rack contains three
Motorola 68020 single-board computers on a VME bus. A link processor in the main rack
receives information from the joint processors and passes it on to the arm processor. The
arm processor performs the control algorithm calculations for each arm. It also sends
commands to the pulse-width modulated (PWM) amplifiers that drive the motors. A
communications processor handles the transfer of data between the master and slave racks.
The two racks are connected by a high-speed fiber optic link. A system control processor
on each rack coordinates the activities of the other processors. A Macintosh II personal
computer provides a graphics-based interface with the master rack for system operation.
This interface allows the system operator to set gains, change operating modes, and record
experimental data while the system is running (Herndon et al. 1989).

The bilateral impedance control architecture was implemented on one arm pair of the
LTM. The control software was written in the programming language "C" (Kernighan and
Ritchie 1988). A six-component force-torque sensor manufactured by JR3, Inc. was
mounted on the wrist of the master robot. An identical sensor was mounted to the end of
the slave robot. These sensors measured forces and torques in the hand reference frame.
The force data was transmitted to the control processors asynchronously via parallel
communication.

5.3 Force Transformation

The H matrix for a multi-degree-of-freedom telemanipulator includes force
transformation terms. These terms appear because the interaction forces fy and fg are
measured in Cartesian space, while the robots are controlled in joint space.
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The H matrix compensators filter the interaction forces in the hand reference frame.
This facilitates the specification of impedance to suit the requirements of the task. Since the
master robot may have a different orientation than the slave robot, the robot forces must be
related to a common reference frame before they can be added. The transformation ET

maps the filtered force from each robot into the base reference frame. The base frame is
always fixed, and it is identical for both robots. The base frame forces are added in
Cartesian space. To control the robots at the joint level, the combined force is mapped into
joint space by JT, which is the transpose of the robot Jacobian (Craig 1988). Thus, the H
matrix for a manipulator with n degrees-of-freedom becomes

T T
ﬁ'TmHu Im tlfTsHu

Im

H = 5.1

T T
Is PTmHy T PTgHy,

where the elements of H are n x 6 matrices. The transformations JT and lﬁT are functions of

the joint angles. The LTM transformations are derived from geometric parameters in
Barker and McKinney (1989).

The flow of force signals through the various transformations is illustrated
schematically in Figure 5.3. Note that only transformed base frame forces are passed
between the robots. The transformations for each robot are calculated on the respective
robot's arm processor. This eliminates the need to exchange joint angles between robots.
The input command to the stabilizing control system is formed by adding the robot's initial
position to the output of the H matrix. This insures that the position controller will return
the robot to its original position in the absence of interaction forces. The bilateral
impedance control algorithm runs at a loop rate of 200 Hz.

5.4 Stabilizing Control System

The robots are stabilized by closed-loop position controllers. The position
controllers keep the robots stationary when there are no forces acting on them. In addition,
the position controllers minimize small disturbances in the robot motion caused by joint
friction and changing inertia.

Figure 5.4 is a block diagram of the stabilizing control system for a single joint.
The reference input commands to the control system are generated by the H matrix. Each
joint can move in both pitch and yaw. The pitch and yaw positions are measured by
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resolvers mounted on both joint axes. The pitch error is obtained by subtracting the pitch
position, Py, from the pitch reference command, Pref. Similarly, the yaw error is obtained
by subtracting the yaw position, Yr, from the yaw reference command, Yref. To drive the
motors in the proper directions, it is necessary to decouple the pitch and yaw errors. The
drive command to motor A is obtained by subtracting the pitch error from the yaw error,
while the drive command to motor B is obtained by adding the pitch and yaw errors. This
causes the motors to rotate in opposite directions for pitch commands, and in the same
direction for yaw commands.

Next, the decoupled errors are filtered by two identical stabilizing compensators.
The form of these compensators depends on the joint being controlled. The compensators
are implemented in the computer algorithm by difference equations. The digital output of
the compensators is changed into a corresponding analog voltage by the D/A converter.
This voltage is sent to the PWM amplifers that supply current to the motors. The motor
current is directly proportional to the amplifier input voltage. The combined torque of
motors A and B drive the robot arm.

The closed-loop system consists of the robots, the stabilizing compensators, and the
internal gains given in Figure 5.4. To simplify the equations governing the performance
parameters, the force transformation terms in the H matrix will be included as a gain on the
input to the stabilizing control system. This allows the transformations and the closed-loop
system to be represented by a single gain. For the master robot, the overall closed-loop gain
is represented by Gp,. Similarly, G represents the overall closed-loop gain for the slave
robot. The values of Gy, and Gg will be determined in the next section.
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5.5 Determination of System Variables

The design of the H matrix to achieve desired performance characteristics depends
on accurate knowledge of the system variables Gm, Sm, Gs, Ss» Sh, and E. The first four
variables govern the dynamic behavior of the robots. These variables do not change as the
telerobotic system performs different tasks. In contrast, the variables Sy and E are
continually changing with the configuration of the human arm and the environment. In this
section, static values for the system variables will be experimentally determined for later use.
Static values can be used to design the H matrix as long as the robot motions are relatively
slow .

For the master robot, the gain of the primary closed-loop system is Gm. The closed-
loop system consists of the robot and the stabilizing controller. The input to the closed-
loop system is the electronic command up, that results from the operation of the H matrix on
the robot forces

um =Hjj fm + Hi2 fs (5.2)

The output of the closed-loop system is the position of the master robot, ym. The force
exerted on the master robot by the human arm causes a position disturbance. The
sensitivity of the master robot to the applied force is Sm. The sensitivity is mainly a
function of the stiffness of the stabilizing control system, but the robot's friction and inertia
are also significant contributors. The master robot's motion results from the action of the
control system and the interaction between the robot and the human arm. The dynamic
equation of the master robot is

¥m =Gm Um + Sm fm (5.3)
Substituting equation 5.2 into equation 5.3 yields
ym=Gm (11 fm+H12 )+ Smfm (5.4)

Now suppose that all gains in the H matrix except Hyy are zero. Then equation 5.4
becomes

¥m = (Gm H11 + Sp) fm (5.5
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The master impedance Zp, is the impedance that the telerobotic system presents to the
human. It is defined as

Zon = In (5.6)
Ym
Using the definition of the master impedance, equation 5.5 can be written as

1/Zm = GmH11 + Sm (5.7)

Equation 5.7 implies that there is a linear relationship between the inverse master impedance
and the gain of Hyy. Thus, if 1/Zp, is plotted as a function of Hyj, the slope of the resulting
curve will be Gm, and the Y-axis intercept will be Sp.

In the first experiment, the values of Gy and S, were determined from
measurements of the master impedance. All of the gains in the H matrix except Hy; were
set to zero. The gain of Hyj was varied from 0 to 1.00 in increments of 0.10. An
increasing vertical force was applied to the master robot so that its elbow executed a
downward pitch motion. For each data set, the master force and position were recorded for
5 seconds. The master impedance was obtained by plotting the master force versus the
master position. A typical plot is shown in Figure 5.5. The initial position of the master
robot has been referenced to zero radians. The slope of this curve is Z;. A least squares
curve fit was used to calculate the slope for each data set, and the results are listed in Table
5.1

The inverse master impedance is plotted as a function of H1 | in Figure 5.6. A least
squares curve fit was used to find the equation of the line that best represents the trend of
the experimental data. The slope of this line is Gy, = 0.0117 rad/Ibf, and the Y-axis intercept
is Sm = 0.0033 rad/Ibf.

The motion of the slave robot results from the action of its control system and the
interaction of the robot with the environment. The dynamic equation for the slave robot is

ys = Gs ug + S5 {5 (5.8)

The gain of the primary closed-loop system is Gs. The input command to the closed-loop
system is ug. The H matrix filters the robot forces such that

us = Ho1 fm + H2o fs 5.9



Substituting equation 5.9 into equation 5.8 yields
ys = Gs (H21 fm + H22 f5) + Ss fs (5.10)

Now suppose that all gains in the H matrix except Hz2 are zero. Then equation 5.10
becomes

ys = (Gs H22 + Sg) fs (5.11)

The slave impedance Zg is the impedance that the telerobotic system presents to the
environment. It is defined as

z =L (5.12)

Using the definition of the slave impedance, equation 5.11 can be written as
1/Zs = GsHp2 + S (5.13)

Equation 5.13 implies that there is a linear relationship between the inverse slave impedance
and the gain of Hp,. Thus, if 1/Zg is plotted as a function of H2, the slope of the resulting
curve will be Gg, and the Y-axis intercept will be Ss.

In the second experiment, the values of Ggs and Sg were determined from
measurements of the slave impedance. All of the gains in the H matrix except H22 were set
to zero. The gain of Hy was varied from 0 to 0.60 in increments of 0.05. An increasing
vertical force was applied to the slave robot so that its elbow executed an upward pitch
motion. For each data set, the slave force and position were recorded for 5 seconds. The
slave impedance was obtained by plotting the slave force versus the slave position. A typical
plot is shown in Figure 5.7. The slope of this curve is Zs. A least squares curve fit was
used to calculate the slope for each data set, and the results are listed in Table 5.2.

It was found that Zs could not be measured directly when the gain of Hz2 was small
because there was a significant amount of backlash in the wrist joint. The wrist joint was
locked to prevent rotation. However, when force was applied to the end of the robot, the
wrist joint would move slightly before the locking mechanism engaged. As a result, the
slave impedance was nonlinear in the region H2; < 0.10. This problem did not occur in the
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master robot because its wrist joint was firmly locked.

The inverse slave impedance is plotted as a function of H22 in Figure 5.8. A least
squares curve fit was used to find the equation of the line that best represents the trend of
the experimental data. The slope of this line is Gs = 0.0117 rad/Ibf, and the Y-axis intercept
is Sg = 0.0012 rad/1bf. '

The closed-loop gain of the master robot, G, is equal to the closed-loop gain of the
slave robot, Gs. This is expected because the two robots are nearly identical, and they are
stabilized by the same type of compensator. The measured slave sensitivity, Ss, is
considerably lower than expected. The slave sensitivity should be approximately equal to
the master sensitivity, Sm. However, the backlash of the wrist joint introduces flexibility into
the slave robot. The force applied on the end of the robot causes deformation of the arm in
addition to rotation of the elbow. Consequently, the sensitivity measured at the elbow is
greatly reduced. To overcome the flexibility problem, an effective sensitivity was calculated
for the slave robot when it was compressing a compliant environment. Before this could be
done, it was necessary to determine the environmental impedance.

The environmental impedance can be obtained from the equation that governs the
interaction force on the slave robot

fs=fext-Eys (5.14)

If there are no external forces acting on the slave robot, the environment behaves like a
passive impedance E such that

E=- % when fex =0 (5.15)

Thus, E can be determined by measuring the ratio between the slave force and position.

The magnitude of E was measured with the experimental setup shown in Figure 5.9.
The environment was simulated by a spring scale that was attached at its base to a table. In
this case, the environmental impedance can be approximated as a linear stiffness. For the
third experiment, the H matrix had the following structure:

no[ B0 Hesd

Since Hyj is zero, the slave robot has no electronically generated compliance to forces
exerted on it by the environment. Therefore, all of the compliance in the system must result
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from either the structural flexibility of the robot arm or the impedance of the environment.
The combined stiffness of the robot arm and the environmerit is measured in the
experiment. Thus, the value obtained for E is the effective impedance presented to the
telerobotic system if the slave robot's structural flexibility is transferred to the environment.

The slave robot pushed down against the spring scale in response to an increasing
vertical force exerted on the master robot. The end-point forces and elbow pitch positions
of both robots were recorded for 5 seconds. Ten sets of data were acquired. For each data
set, the slave force was plotted versus the slave position. A typical plot is shown in Figure
5.10. The slope of this curve is E, and it was calculated with a least-squares curve fit. The
effective environmental impedance for each data set is listed in Table 5.3. The average value
was E = 217.0 Ibf/rad.

The calibrated stiffness of the spring scale was k = 22.9 Ibf/in. When the elbow
joint rotates through one radian, the end of the slave robot moves through an arc length
equal to the distance from the elbow to the end effector. This distance is 34.5 inches.
Therefore, for small displacements, the angular stiffness of the spring scale is

k = (22.9 Ibf/in) (34.5 in/rad) = 790.0 1bf/rad
This is the actual environmental impedance. The effective environmental impedance is much
lower because it includes the structural flexibility of the slave robot.

Once a value has been obtained for E, it is possible to calculate Ss. If the H matrix
is designed so that Hy; = 1 and Ha2 = 0, equation 5.10 becomes

¥s = GS fm + Ss fs (5.16)

Dividing both sides of the previous equation by fs gives

Ys_gIm, g, (5.17)
fS fS

Making use of equation 5.15 and the definition of the force ratio yields

Gs 1
- —
SS = -(Rf + E) (518)

Since G and E have already been determined, this equation can be used to calculate an
effective value for Sg from measurements of the the force ratio. Using the data collected in
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the third experiment, the force ratio was obtained by plotting the slave force versus the
master force. A typical plot is shown in Figure 5.11. The slope was calculated with a least
squares curve fit. The force ratio for each data set is listed in Table 5.4. The average value
was Rf = 1.48. Substituting the average values given above for G, E, and Ry into equation
5.20, it was found that Sg = 0.0033 rad/Ibf. This is the effective sensitivity of the slave
robot. Note that it is equal to the measured sensitivity of the master robot. Both robots
should have nearly the same sensitivity because they are almost identical.

From measurements of the slave impedance, it was previously determined that Sg =
0.0012 rad/Ibf. The effective sensitivity is larger than the measured sensitivity because the
flexibility of the slave robot has been transferred to the environment. The effective
sensitivity is the sensitivity that the slave robot would have if it had a completely rigid
structure. For this reason, the effective values for Ss and E will be used in the design of the
H matrix.

Finally, the impedance of the human arm will be determined. The dynamic equation
for the human arm is

fm =Uh - Sh ¥m (5.19)

If the human is not actively controlling the tension of her muscles, there are no commands
originating from the central nervous system. Therefore, up = 0 and the human arm behaves
like a passive impedance S, such that

Sh=- g,fnnl‘ whenup =0 (5.20)

Thus, Sy, can be determined by measuring the ratio between the master force and position.
In general, Sp, is a nonlinear function of the human arm's configuration. Therefore, the value
obtained by this method is only valid for small deviations from the measurement
configuration.

To determine the magnitude of Sp, a virtual force was generated in the computer.
The virtual force simulated a steadily increasing external force acting on the slave robot's
force sensor. Force reflection from the slave robot caused the master robot to push up
against the human arm. To maximize its sensitivity, the human arm was kept as rigid as
possible with the forearm nearly horizontal. The end-point force and elbow pitch position
of the master robot were recorded for 5 seconds. Ten sets of data were acquired.
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The H matrix had the following structure:

H_[H11=0 Hiz=1
=L H21=0 H=0

Since Hy is zero, there is no electronically generated compliance in the master robot.
Therefore, all the compliance on the master side of the telerobotic system must result from
the sensitivity of the human arm. The master robot is driven by reflection of the virtual
force from the slave robot. The force reflection is provided by Hj2.

For each data set, the master force was plotted as a function of the master position.
A typical plot is shown in Figure 5.12. The slope of this curve is the human arm sensitivity,
Sh. The slope was calculated with a least-squares curve fit. The sensitivity for each data set
is listed in Table 5.5. The average value was Sp = 115.5 1bf/rad.

A general method for determining the static values of system variables has been
described in this section. First, each variable is expressed as a simple relationship between
force and position. Next, a known force input is applied to the telerobotic system, and the
resulting position output is measured. Finally, the static value is calculated by plotting the
force and position variables on the same graph. With this method, the gains applied within
the computer by the force sensor, the position encoders, and the coordinate frame
transformations are included implicitly. The H matrix can then be designed without concern
for units.
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Table 5.1

Measured Values of Zy
Data Set Hj; Zm (Ibfirad)
1 0 297.6
2 0.10 219.8
3 0.20 180.6
4 0.30 151.5
5 0.40 125.8
6 0.50 111.2
7 0.60 98.1
8 0.70 86.1
9 0.80 79.1
10 0.90 71.7
11 1.00 66.8




Table 5.2

Measured Values of Zg

Data Set H22 Z; (Ibfirad)
1 0 -
2 0.05

3 0.10 426.1
4 0.15 342.6
5 0.20 276.9
6 0.25 238.8
7 0.30 2123
8 0.35 187.7
9 0.40 169.5
10 0.45 154.0
11 0.50 142.1
12 0.55 130.4
13 0.60 121.6




Table 5.3

Measured Values of E
Data Set E (Ibfirad) Deviation
1 218.0 1.0
2 212.8 42
3 2179 0.9
4 218.3 1.3
5 216.8 -0.2
6 217.0 0.0
7 213.0 -4.0
8 216.9 -0.1
9 219.1 2.1
10 220.3 33

mean = 217.0 std. dev. = 2.3




Table 5.4

Measured Values of R¢
Data Set R Deviation
1 1.52 0.04
2 1.46 -0.02
3 1.48 : 0.00
4 1.46 ' -0.02
5 1.51 0.03
6 1.50 0.02
7 145 -0.03
8 1.48 0.00
9 1.47 -0.01
10 146 -0.02

mean = 1.48 std. dev. = 0.02




Table 5.5

Measured Values of Sy
Data Set S (Ibfirad) Deviation
1 119.2 3.7
2 116.2 0.7
3 106.7 -8.8
4 115.8 ' 0.3
5 114.5 -1.0
6 119.1 3.6
7 123.0 7.5
8 113.2 -2.3
9 115.6 0.1
10 1113 4.2

mean = 115.5 sid. dev. = 4.3
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5.6 Performance Parameters

Now that static values have been found for the system variables, the H matrix can be
designed to specify desired performance characteristics. To illustrate their relationship to
the H matrix more clearly, the performance parameters will be specified one at a time.
Several values will be selected for each parameter, and the resulting performance of the
telerobotic system will be measured. By comparing the actual performance to the desired
performance, the validity of the theoretical performance equations will be confirmed. After
the parameters have been specified individually, it will be demonstrated that three
performance parameters can be specified simultaneously. The robot impedances, the
position ratio, and the force ratio will be discussed.

5.6.1 Impedance

The performance parameter that relates force and position is known as impedance.
An impedance may be defined at each end of the telerobotic system. For a single degree-of-
freedom, the robot impedances are defined as

7, =im (5.21)
Ym
s
Zs= : (5.22)
¥s :

The master impedance Zy, is the impedance that the telerobotic system presents to the
human. It is desirable to specify Zm, to reduce fatigue of the human operator. Zp, depends
not only on the internal dynamics of the telerobotic system, but also on the impedance of the
environment. The master impedance can be expressed in terms of system variables as

7 - 1+PyE
“ P11 + APE

(5.23)
The slave impedance Zg is the impedance that the telerobotic system presents to the
environment. It is desirable to specify Zg to insure system stability, and to suit the
requirements of the task. Zs depends on the internal dynamics of the telerobotic system and
the impedance of the human arm. The slave impedance can be expressed in terms of system
variables as
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Z = 1+P11Sy
~ P2y + APSy

(5.24)

When there is no force reflection from the environment, the gain of Hy2 is zero.
Therefore, P12 = 0 and AP = P11P22. Equation 5.23 for the master impedance can then be
simplified to

1 1

Zm = P11~ GmH11 + Sm 625

Similarly, when there is no force reflection, equation 5.24 for the slave impedance becomes

1 1

Zs= Py, ~ GeHy + Ss

(5.26)

For this special case, the robot impedances are determined by a single element in the H
matrix.

The purpose of the first experiment was to demonstrate that the magnitude of the
impedance can be arbitrarily specified. It was not possible to measure the impedances of
both robots at the same time, so only the master impedance was assigned a specific value.
The gain of Hj necessary to achieve any desired master impedance Zn, is given by

1/Z - Sm

Hy = Gm

(5.27)

Equation 5.27 can be used to design the H matrix. The static values of the system variables
have been experimentally determined. It was found that Gy, = 0.0117 rad/lbf and S =
0.0033 rad/1bf for small elbow pitch motions. The master impedance was chosen to be Zn,
= 100 Ibf/rad. The H matrix had the following structure:

_ T H11=0.57 Hj2=0
H= [ Hy;=0 Hpy=0 ]

The magnitude of Hy was calculated from equation 5.27 using the values given above for
the system variables. An increasing vertical force was exerted on the end of the master
robot. The end-point force and the elbow pitch position of the robot were recorded for 5
seconds.
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Figure 5.13 is a plot of master force versus master position. The slope of this curve
is Zm. It was calculated with a least-squares curve fit. The measured impedance was Zy, =
101.2 Ibf/rad. The experimental result agrees well with the theoretical prediction.

In addition to specifying the magnitude of the impedance, it is possible to shape its
frequency response. This is done by choosing an appropriate structure for the
compensators in the H matrix. If a constant gain is used, the robot's position is directly
proportional to the applied force, and the impedance can be modeled as a spring stiffness.
An impedance of this type was illustrated in the previous experiment. It causes the robot to
return to its initial position after force is removed. However, the human must always work
against the restoring force of the spring.

If a pure integrator is used, the H matrix relates force and position such that

{y} =H§ {f} (5.28)

where s is the Laplace operator. In the time domain, this equation can be rewritten as
(f) = [CI{y) (5.29)

where the damping matrix [C] = [H]-]. Thus, for an integrator, the force is directly
proportional to velocity, and the impedance can be modeled as a viscous damper. After
force is removed, the robot will remain in its last position. Since there are no restoring
forces acting on the human arm, a damping impedance is the most natural mode of motion
for teleoperation.

The purpose of the second experiment was to demonstrate a damping impedance for
the master robot. The H matrix had the following structure:

_ T Hn=l/s Hj=0
H= [ H21=0  Hz=0 ]

The compensator Hy] integrates the master force. The integration was implemented in the
computer algorithm by difference equation of the form

Yo+l =yn+Hfp (5.30)

where H is the gain of the compensator, fy, is the force input, yp is the position output at
step n, and yp41 is the position output at step n+1.
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The elbow of the master robot was moved at a constant yaw velocity. The robot
force and position were recorded for 5 seconds. Figure 5.14 is a plot of the master force
versus master position. There is an initial transient where the force builds up enough to
overcome the robot's inertia. Then the curve is fairly flat, indicating that a constant damping
force is acting on the robot.

By tailoring the structure of the compensators in the H matrix, it is possible to
modulate the robot impedances. It was shown that the master robot exhibits a stiffness
impedance when the H matrix elements have constant gain. When the force input is
integrated, the master robot exhibits a damping impedance. A combination of stiffness and
damping could be attained by using a first-order filter in the H matrix. A second-order filter
would add an inertial impedance where the interaction force is proportional to the robot's
acceleration. It will be demonstrated in a later section that the robot impedance can be
arbitrarily specified in conjunction with other performance paramctci‘s.
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5.6.2 Position Ratio

The performance parameter that relates the positions of the master and slave robots
is known as the position ratio. For a single degree-of-freedom, it is defined as

Ry = XS_ (5.31)

Often it is desirable to specify a non-unity value for the position ratio so that the two robots
move in the same direction, but have different amplitudes of motion. This enables the slave
robot to perform small, precise motions in response to large, coarse motions of the master
robot. The position ratio can be expressed in terms of system variables as

Py .
Ry = P11 P+ APE (5.32)

When the slave robot is moving freely through space, there are no forces exerted on it by
the environment. In this case, E = 0 and the position ratio becomes

Py1 __ GsHy
Ry =11 = GuHu1 + Sm (5.33)

Thus, for unconstrained motion, the position ratio depends on the relationship between two
elements in the H matrix. The compensator Hy filters the master force, and its output is
used to drive the master robot. Hjj; determines the motion of the master robot by
controlling its impedance. The compensator Hp; also filters the master force, and its output
is used to drive the slave robot. H31 couples the motion of the slave robot to that of the
master robot. The position ratio can be arbitrarily specified by selecting the relative
magnitudes of Hyy and Hj;i.

Now suppose that both compensators in the first column of the H matrix integrate
the master robot force. This results in a damping impedance for the master robot. A
damping impedance allows the human to move the robot to any position in space without a
restoring force trying to return the robot to its initial position. When integrators are
substituted into equation 5.33 for Hy and H2;, the position ratio becomes

Gs(H3)/s)
Ry = Gm(H11/5) + Sm (5.34)
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113
where s is the Laplace operator. If the gains of Gy, and Gg are approximately the same
magnitude, equation 5.34 can be written as

Ro = H2j
Y™ (Sm/Gm)s + H1p

(5.35)

The sensitivity Sy is generally much smaller than the closed-loop gain Gm. Therefore,
when the cyclic frequency of robot motion is small, equation 5.35 can be approximated as

Ho
Ry =~ i1 (5.36)

This simple relationship will be used to design the H matrix in the next three experiments.

For the first experiment, the ratio of slave position to master position was specified
to be Ry = 1:1. In this case, the slave robot should track the master robot exactly. The H
matrix was designed to have the following structure:

_[ Hu=l/s Hj2=0
H‘[H21=1/s Hy=0 ]

The compensators in the first column of the H matrix integrate the master force. The
integration was implemented in the computer algorithm by a difference equation. 7

The elbow of the master robot was moved through a series of pitch and yaw
motions. The motion of the slave robot was unconstrained. The joint angles of both robots
were recorded over a 30-second period. Figure 5.15 is a plot of robot pitch position versus
time. Py, is the pitch position of the master robot, and Ps is the pitch position of the slave
robot. The robots had different initial positions. The initial position of each robot was
referenced to zero radians so that their trajectories could be compared. Figure 5.16 is a plot
of robot yaw position versus time. Yy is the yaw position of the master robot, and Yy is the
yaw position of the slave robot. It can be seen that the slave robot tracks the master robot in
both degrees-of-freedom.

The magnitude of the position ratio can be determined by plotting the slave position
versus the master position. The slope of the resulting curve is the position ratio. Slave pitch
position is plotted versus master pitch position in Figure 5.17. A least-squares curve fit
yields an experimental value of Ry = 0.96 for elbow pitch. Figure 5.18 is a plot of slave
yaw position versus master yaw position. The experimentally determined position ratio for
elbow yaw is Ry = 1.01.



For the second experiment, the position ratio was specified to be Ry = 2:1. In this
case, the slave robot should move twice as much as the master robot. The H matrix had the
following structure:

_[ Hu=l/s  Hjz=0
H-[ Hyi=2/s Hay=0 ]

Figure 5.19 is a plot of robot pitch position versus time, while Figure 5.20 is a plot of robot
yaw position versus time. Notice that for both degrees-of-freedom, the slave robot moves in
phase with the master robot. However, the change in position of the slave robot is twice as
large as the change in position of the master robot. Slave position is plotted versus master
position in Figures 5.21 and 5.22. The experimentally determined position ratios are Ry =
2.00 for elbow pitch, and Ry = 2.01 for elbow yaw.

For the third experiment, the position ratio was specified to be Ry = 1:3. In this
case, the slave robot should move a third as less as the master robot. The H matrix had the
following structure:

_ [ Hu=1.5/s Hj=0
H_[ H71=0.5/s H2y=0 ]

The pitch and yaw positions of the robots are plotted versus time in Figures 5.23 and 5.24.
The slave robot moves in phase with the master robot for both degrees-of-freedom. Slave
position is plotted versus master position in Figures 5.25 and 5.26. The measured position
ratios are Ry = 0.30 for elbow pitch, and Ry = 0.31 for elbow yaw. The measured position
ratios are slightly lower than predicted. This is probably due to small errors being amplified
as the difference in robot positions increases.

Three position ratios have now been demonstrated: Ry = 1:1, Ry =2:1, and Ry =
1:3. The position ratios were arbitrarily specified by selecting the relative magnitudes of the
compensators in the first column of the H matrix. The slave robot tracks the master robot in
two degrees-of-freedom. The measured position ratios agree well with theoretical
predictions. To simplify the experiments, only the special case of unconstrained motion
was investigated here. This restriction allowed only one performance parameter, the
position ratio, to be specified at a time. The general case where three performance
parameters are specified simultaneously will be demonstrated in a later section.
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5.6.3 Force Ratio

The performance parameter that relates the forces acting on the master and slave
robots is known as the force ratio. For a single degree-of-freedom, it is defined as

Rf= %S- (5.37)
m

For many tasks, it is desirable to specify the force ratio. This enables the human operator to
exert large forces with the slave robot by applying small forces to the master robot. The
force ratio can be expressed in terms of system variables as

- ;PZ_I_E_
Rf= T+ PyE (5.38)

The force ratio depends on the dynamics of the environment, and on the relationship
between two elements in the H matrix. The compensator Hp; filters the master force, while
the compensator Hp; filters the slave force. The outputs of both compensators are used to
drive the slave robot. Hpj couples the motion of the slave robot to that of the master robot.
Hp, determines the compliance of the slave robot to forces exerted on it by the environment.
The force ratio can be arbitrarily speciﬁcd by selecting the relative magnitudes of H1 and
H»s. 7

In designing the H matrix, the gain of Haz; is chosen to satisfy the requirements of
system stability. Therefore, the gain of Hp) is specified to achieve the desired force ratio.
Substituting the definitions of the admittances into equation 5.38 and rearranging gives

_Re1 + (GsHp, + SPE]
Hy =R 1+(GGI:E + SE (5.39)

This expression relates Hzj to known system variables. Given values for Hy2 and the
desired force ratio Ry, equation 5.39 can be used to calculate the necessary gain of Ha1. The
magnitude of E has been determined experimentally for compression of a spring scale. The
values of Gg and Sg have also been measured for small elbow pitch motions of the slave
robot. It was found that Gs = 0.0117 rad/Ibf, Sg = 0.0033 rad/lbf, and E = 217.0 Ibf/rad.

For the first experiment, the force ratio was specified to be Rf = 1:1. In this case, the
force exerted by the slave robot should be equal to the force applied to the master robot.
‘The H matrix had the following structure:
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H= [ H;1=0.20 Hj2=0 ]
=L H2=0.78 H2=0.10

The gain of Hy, was selected to insure that the impedance of the slave robot was greater
than the impedance of the environment. This is a necessary requirement for system
stability. The gain of Hpj was calculated from equation 5.39 using the values given above
for the system variables. The elbow of the master robot was moved through a series of
pitch motions. The slave robot pushed down against a spring scale that was fixed at its base
to a table. The spring scale simulated a compliant environment with linear stiffness. The
end-point forces of both robots were recorded for 20 seconds.

Figure 5.27 is a plot of robot force versus time. It can be seen that the slave force
tracks the master force as the spring scale is alternately compressed and released. The
magnitude of the force ratio can be determined from Figure 5.28, which is a plot of slave
force versus master force. A least-squares curve fit yields a slope of Ry = 1.02.

For the second experiment, the force ratio was specified to be Ry = 2:1. In this case,
the force exerted by the slave robot should be twice as large as the force applied to the
master robot. The desired force ratio was achieved by calculating the required magnitude
for Hy1. The H matrix had the following structure:

H = [ H11=0.20 Hj2=0 ]
= L Hp1=1.55 H»=0.10

The robot forces are plotted versus time in Figure 5.29. The slave force varies in phase with
the master force. However, the amplitude of the slave force is double the amplitude of the
master force. Figure 5.30 is a graph of slave force versus master force. The measured
force ratio is Ry = 2.04. ,

Two force ratios have been demonstrated: R = 1:1 and R = 2:1. The slave force
tracks the master force when the slave robot is constrained by a compliant environment.
The measured force ratios agree well with theoretical predictions. To simplify the
experiments, only one performance parameter, the force ratio, was specified at a time. The
general case where three performance parameters are specified simultaneously will be
demonstrated in the next section.
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5.6.4 Simultaneous Specification

In the previous experiments, only one performance parameter was specified at a
time. It was necessary to assume that either the robot motion was unconstrained, or that
there was no force reflection from the environment. These special cases illustrated the
relationships between the performance parameters, the system variables, and the H matrix.
In this section, the general case where three performance pafameters are specified
simultaneously will be demonstrated. The telerobotic system will be completely bilateral
because force reflection will be included. The H matrix will be designed for both
performance and stability.

The performance parameters were measured when the slave robot was compressing
a spring scale. The spring scale simulated a compliant environment with linear stiffness.
The master robot was moved through a series of elbow pitch motions by the human
operator. The end-point forces and joint positions of both robots were recorded for 20
seconds.

The desired performance characteristics for the telerobotic system were:

Rf=2 Ry=1 Z;>E

The first performance specification states that the force exerted by the slave robot should be
twice the force applied to the master robot. The second performance specification requires
that the positions of both robots be identical. The third performance specification is
necessary to satisfy the requirements of system stability.

The equations that relate the performance parameters to known system variables are

P2 E

sz-l + P»E

(5.40)

Py

Ry = Py, + DPE (5.41)

_ 1+P;1Sp
Zs= P22 + DPSy, (5.42)

Given desired values for the performance parameters, equations 5.40 through 5.42 can be
solved for the four unknown elements Hyj, Hi2, H21, and Hp2.  Since there are only three
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equations involving the performance parameters, one of the elements in the H matrix must
be chosen arbitrarily.

Design of the H matrix begins by selecting a sufficiently small value for Hp2. This
insures that the slave impedance will always be greater than the impedance of the
environment, no matter what value is assumed by the highly variable human arm sensitivity,
Sh. The minimum slave impedance occurs when Sp = 0. In that case,

1 1

%= Py~ G + 5s G4
The stability condition Zs > E will be satisfied when
Hy < B 5s (5.44)

Gs

The static values of the system variables have been previously determined. It was found that
G = 0.0117 rad/1bf, Sm = 0.0033 rad/Ibf, Gs = 0.0117 rad/bf, S5 = 0.0033 rad/Ibf, and E =
217.0 Ibffrad. Substituting these values into equation 5.44 yields Hp2 < 0.11. Therefore, to
guarantee stability for all possible values of the human arm sensitivity, the value of H22 is
chosen to be 0.10.

The next step in the design of the H matrix is the specification of the desired force
ratio. Solving equation 2 for Hp gives

_Rg[1+(GsHp + SHE]

GsE

H

(5.45)

Since the value of Hy; has already been determined, this expression can be used to calculate
the gain of Hj necessary to achieve any desired force ratio. For a force ratio of Rf =2, the
required gain is Hzj = 1.55.

Finally, the position ratio will be specified by selecting the relative values of the two
remaining elements in the H matrix, Hy1 and Hj2. One of these elements must be chosen
arbitrarily, so Hyj is set to unity for convenience. The value of Hy necessary to achieve the
desired position ratio can then be determined from equation 5.41. It can be shown that

_11GpH1 +Sy 1
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where equation 5.40 for the force ratio has been used to simplify the expression. Since Rf
depends on the magnitudes of Hzj and Hy, equation 5.46 relates Hj2 to the other three
elements in the H matrix. For a force ratio of R = 2 and a position ratio of Ry = 1, the
required gain is Hy2 = 0.25.

* The design of the H matrix to meet the specified performance criteria is now
complete. To summarize, the H matrix has the following structure:

H= [ Hj=1 H12=0.25
~ L Hy1=1.55 Hp=0.10

The robot forces are plotted versus time in Figure 5.31. The slave force varies in
phase with the master force as the spring scale is alternately compressed and released. The
amplitude of the slave force is double the amplitude of the master force. The force ratio can
be determined from Figure 5.32, which is a plot of slave force versus master force. A least-
squares curve fit yields a slope of Rf = 2.02. The robot positions are plotted versus time in
Figure 5.33. The slave robot tracks the master robot closely. Figure 5.34 is a plot of slave
position versus master position. The measured position ratio is Ry = 0.98. The actual
values of the force ratio and the position ratio agree well with their specified values.

The purpose of placing the performance criterion on the slave impedance was to
guarantee stability of the telerobotic system during the experiment. However, it was not
possible to measure the magnitude of Zs because the slave robot was constrained by the
environment. The only conclusion that can be inferred is that the slave impedance was
greater than the impedance of the environment. Otherwise, the system would have been
unstable. It will be shown that this must be true in a later section.

Desired values were specified for the force ratio, the position ratio, and the slave
impedance. All three performance specifications were achieved by selecting the relative
magnitudes of the elements in the H matrix. It has been demonstrated that three
performance parameters can be specified simultaneously for the most general case of a
bilateral telerobotic system.

135



136

-Fm

(3q1) 2404

™t 1

20

15

10

Time (sec)

Force vs. Time

Figure 5.31:

Re=2:1



Fs (Ibf)

-
(2]
FEre e

b
(=]

salaaaatan

n

Curve Fit
y = 2.015x + 0.531

-Fm (ibf)

Figure 5.32:  Slave Force vs. Master Force
Rf=2:1

137



Position (rad)

-0.20

Figure 5.33:

Time (sec)

Position vs. Time
Ry =1:1

138



Ys (rad)

0.00

-0.10 o

0.15

FUED U U UIEY NN WY WY T 1

Figure 5.34:

Ym (rad)

Slave Position vs. Master Position
Ry =1:1

0.00

Curve Fit
y = 0.882x - 0.006

139



5.7 System Identification and Robustness

Robustness of the control architecture will be demonstrated by quantifying
acceptable uncertainties in the telerobotic system's dynamic model. Knowledge of the
dynamic model and its associated uncertainties is essential in the design of the H matrix.
The process of determining the dynamic model from observed behavior is known as system
identification.

There are two basic approaches to system identification. The first approach involves
applying a sinusoidal input to the system at various frequencies and measuring the
amplitude and phase of the corresponding output. The measured frequency response is
then used to estimate the order and structure of the dynamic model. In the second approach,
the dynamic model is represented by a parametric difference equation. The parameters in
the difference equation are selected to minimize the error between the actual system
response and the response predicted by the model. Once the model structure has been
identified by parameter estimation, the frequency response can be calculated. In both
approaches, the frequency response is used to determine the model uncertainties. While the
first approach is a direct measurement of the frequency response, it has the disadvantage
that large amounts of experimental data must be collected to yield accurate results. In
addition, the sinusoidal inputs can lead to cyclic fatigue of the robotic hardware. In contrast,
the second approach permits the determination of the dynamic model from a single set of
random inputs. For these reasons, the parametric approach to system identification will be
used in the following experiments.

~ Consider the linear time-invariant system depicted in Figure 5.35. The input signal
is u(t), and the output signal is y(t). The output is related to the input by the impulse
response function g(t) such that

- =j'°(; 2(T) u(t-T) dT (5.47)

If the impulse response function is known, the output corresponding to any input can be
calculated. Thus, g(T) is a complete characterization of the system (Ogata 1970).

Typically, both the input and output signals are sampled at discrete time intervals T.
The behavior of the system is observed at the sampling instants

t=kT, k=1,2,..
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For notational convenience, it will be assumed that the sampling interval is equal to one time
unit so that

t=1,2,..

In discrete time, the integral in equation 5.47 can be replaced by the sum over all sampling
instants. That is

y(t) = kElg(k) u(t-k) (5.48)

A realistic system is affected by disturbances such as measurement noise and
uncontrollable inputs from the environment. The disturbances are usually only noticeable
through their effects on the output. Thus, it will be assumed that the disturbances can be
represented by an additive term v(t) at the output as shown in Figure 5.36. When the
system is influenced by disturbances, equation 5.48 becomes

y@©) = kilg(k) u(t-k) + v(t) (5.49)

Many types of disturbances can be described as filtered random noise. If e(t) is a sequence
of random variables with zero mean values, the disturbance can be expressed in a form
similar to equation 5.48

v(i) = S hk) et-k) (5.50)
k=0

Substituting equation 5.50 into equation 5.49 yields the basic description of a linear system
with additive disturbance ‘

y(® = 3 gk) u(t-k) + 3 hk) e(t-k) (5.51)
k=1 k=0

The previous equation can be expressed in a simpler form by introducing the shift operétor
q! defined as
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qlu®=u(t-1)
Now equation 5.51 can be written as
y(t) = G(q) u(t) + H(g) e(1) (5.52)

where

G(q) = kf.l gk) gk

H(@) = 2 h(k) gk
k=0

In equation 5.52, G(q) is known as the transfer function of the linear system (MATLAB
User's Guide 1989). '

The problem of system identification is to estimate the functions G and H from
observations of uand y. To perforrh the estimation, the functions are expressed in terms of
a finite number of coefficients. These coefficients are the parameters to be determined. The
simplest parametric relationship between the inputs and outputs is a difference equation of
the form

y(t) + a1y(t-1) + ... + apay(t-na) = bju(t-1) + ... + bypu(t-nb) + e(t) (5.53)

where the random noise e(t) appears as a direct error. Using the shift operator, the
difference equation can be written as

A(Q) y(©) = B(q@) u(®) + () | (5.5
where
A@Q=1+a1ql +.. +apgqm

B(q) = biq! + ... + bypq b
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Equation 5.54 is known as an autoregressive or ARX model (Ljung 1987). Note that the
ARX model corresponds to equation 5.52 if

G(q) =§—§‘£ and

HO = &g

The order of the denominator polynomial is na, while nb is the order of the numerator
polynomial. The signal flow diagram for the ARX model is shown in Figure 5.37. The
random noise goes through the characteristic dynamics of the system before being added to
the output.

Sometimes, the system dynamics contain a delay of nk samples between the input
and the output. In that case, some of the leading coefficients of B are zero since the input
affects the output only after nk samples. Consequently, the ARX model is modified by the
shift operator 7K as follows

A(@ y(® = g™ B(q) u(®) + e(t) (5.55)

In the previous equation, the variable e(t) represents the part of the output that cannot
be predicted from past data. Given a model for the system, the prediction error can be
calculated from

e(t) = A@) y(t) - g™ B(q) u(t) (5.56)

The most common method of parameter estimation is to choose the polynomials A and B
such that the square of the prediction error is minimized for all sampling instants. That is, if

N
VNA, B) = % 3, €X0) (5.57)
t=1

then
[A, B] = arg min VN(A, B)

where N is the total number of samples. This is known as the least-squares estimate of the
model parameters (MATLAB User's Guide 1989).

Many different model structures are possible, depending on the choices made for
the orders of the polynomials and the number of delays. The question then arises of how to
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select the best model to represent the observed data. One method of evaluating the
candidate models is called the Akaike Final Prediction Error Criterion (FPE). The FPE is
based on the minimum value of the criterion function VN defined in equation 5.57. The
FPE is given by

1 +n/N
FPE = TN VN (5.58)

where n is the number of estimated parameters in the model (Ljung 1987). The theory says
that the model with the smallest value of FPE should be chosen. Another method of
evaluating models is called cross-validation. The candidate model is used to calculate a
simulated output from a new set of input data. The new input data is data that was not used
in the parameter estimation. If the model is a good one, the simulated output will match the
actual output corresponding to the new input data. If several models remain candidates after
cross-validation, the simplest model is usually selected.

In the bilateral impedance control architecture, the H matrix is designed to achieve
specified values of the performance parameters. Deviations from the desired performance
are caused by uncertainties in the dynamic model used to design the H matrix. A measure
of robustness to model uncertainties can be obtained from the frequency response of the
performance parameters. The frequency response is calculated from an ARX model found
through system identification.

For the system identification experiments, a random binary input signal was
generated in the computer. A random binary signal shifts between two fixed values in a
random manner. The input signal to the robot control system was a virtual force. In other
words, the input did not result from the application of a real force on the robot's force
sensor. The output of the control syStem was the robot position. For each experiment, two
sets of input-output data were acquired. The data sets had different input signals. The first
data set was used for parameter estimation of the dynamic model, while the second data set
was used for cross-validation. The parameter estimation was done with MATLAB software
(The MathWorks, Inc. 1989).

The purpose of the first experiment was to determine the frequency response of the
performance parameter Zs. The slave robot was free to move without constraint. The H
matrix had the following structure:

n- [ B ]
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Since all elements in the H matrix except Hy2 are zero, the relationship between the force
input and the position output is

ys = (Gs H22 + S5) fs ' (5.59)

However, there is no transfer of mechanical power to the robot from externally applied
forces because the force input signal is generated in the computer. Therefore, the sensitivity
Ss can be eliminated from the previous equation to give

ys = Gsfs (5.60)

where it has been assumed that Hy = 1. Thus, system identification yields the transfer
function of the primary closed-loop system, Gs. The primary closed-loop system consists
of the slave robot and the stabilizing position controller. From the definition of the slave

impedance

ys = (1/Zg) s f (5.61)
Comparing equations 5.60 and 5.61, it is apparent that

Gs = 1/Z; | (5.62)

Thus, the frequency response calculated from the ARX model is equivalent to the frequency
response of the inverse slave impedance, 1/Z;.

The two data sets acquired in the first experiment contained 376 samples each. The
sampling interval was T = 0.04 seconds. The input-output data used for the parametric
estimation of Gg are plotted versus time in Figure 5.38. The random binary input signal is a
square wave with an amplitude of 5 1bf. The output signal is the elbow pitch position of the
slave robot. The input-output data used for cross-validation of the dynamic model are
plotted in Figure 5.39.

The FPE criterion was used to evaluate the candidate models. A second-order
model was selected as the simplest representation of the slave robot dynamics. The ARX
model has the following parameters:

na=2,nb=1,nk=2 FPE=133x10%
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Written explicitly in the form of a difference equation, the model is
y(t) = 1.333 y(t-1) - 0.5911 y(t-2) + 0.003 u(t-2)

The corresponding transfer function in continuous time is

Gi(s) = 00560 s +2.4978
S 7 s2 4+ 13.1445 5 + 213.396

(5.63)

The model was used to calculate the simulated output from the second set of input data.
The cross-validation is shown in Figure 5.40 where the simulated output and the actual
output are plotted versus time. The model predicts the response to a different input signal
fairly well, so it must be a reasonably accurate representation of the system dynamics.

The static gain is the magnitude of the transfer function at zero frequency. The
static gain was measured in a previous section by different methods, and it was found to be
Gs = 0.0117 rad/Ibf. Setting s = 0 in equation 5.63 yields exactly the same value. This
check provides additional confidence in the model.

The closed-loop frequency response of Gg is shown in Figure 5.41. The frequency
response has been normalized so that the static gain is 0 dB. This normalization does not
affect the shape of the frequency response, only its magnitude. The frequency at which the
magnitude falls below -3 dB defines the bandwidth of the system. High system bandwidth
is desirable for good tracking and speed of response. For the slave robot control system,
the bandwidth is about 20 rad/s.

When a human operator is interacting with the telerobotic system, she tends to adapt
her own dynamics to compensate for the dyhamics of the robots. An important
consequence of the human's adaptability is that the maximum attainable bandwidth of the
telerobotic system is limited to about 4.5 rad/s (Sheridan and Ferrell 1974). Since the
human is the limiting factor, increasing the performance of the robots will have almost no
effect on the overall systcni performance.

The closed-loop frequency response of Gg remains fairly flat out to 4 rad/s. This
verifies the assumption made in previous experiments that the static value of G can be used
to design the H matrix if the robot motion is slow. Furthermore, the magnitude of Gg is
constant over nearly the same frequency range as the maximum attainable bandwidth of the
telerobotic system. Thus, little is gained by using the closed-loop transfer function for H
matrix design because the human determines the overall system dynamics. The slight
improvement in accuracy does not warrant the additional complexity involved.



Now that a dynamic model has been identified for the slave robot, it is possible to
quantify the model uncertainties. Consider a closed-loop system with unity feedback like
the one depicted in Figure 5.42. The system dynamics are represented by Gy, which is the
nominal open-loop transfer function. The nominal output of the system is yp. It is related
to the reference input command r by

Yn= {T?—GL,,} r (5.64)

where the term in brackets is the closed-loop transfer function. An uncertainty of AG in the
dynamic model causes a change of Ay in the nominal output. That is

| (Gn + AG)
Yn+AY =16, +A0)" (5.65)

Subtracting equation 5.64 from equation 5.65 gives

AG ,
Ay = [I+Gn+AG (1+Gy) " (5.66)
Dividing equation 5.66 by equation 5.64 yields
> < (5.67)

Yn_ Gn (1 + (Gp + AG)]

If the magnitude of the uncertainty is small compared to the magnitude of Gy, equation 5.67
can be rearranged so that

Aylyn _ 1
AG/G, ~ 1+ G,

(5.68)

This is an expression for the fractional change in the nominal output due to a fractional
uncertainty in the model. Robustness to model uncertainties is usually specified as a
maximum acceptable deviation in the system's nominal output over a certain frequency
range. If the maximum acceptable deviation per unit of model uncertainty is denoted by Ap,

then the robustness specification in the frequency domain becomes
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_1
1+Gy

<Am for0 << wp (5.69)

If the gain of Gy, is much greater than one, equation 5.69 can be written in the simpler form
IGpl > 1/Am for0 < < Wy ‘ (5.70)

Thus, the system is robust to modeling uncertainties on the order of 1/An, if its open-loop
frequency response satisfies equation 5.70. Conversely, equation 5.70 can be used to
calculate the model uncertainties from the measured open-loop frequency response of the
system.

To demonstrate robustness of the slave robot impedance, it is necessary to determine
the open-loop transfer function of 1/Zs. Equation 5.63 is the closed-loop transfer function
of Gs. From equation 5.64, the relationship between the open and closed-loop transfer
functions is

Gs)

Gs)cL = ﬁ—{ﬁ%‘a (5.71)

Since Gg = 1/Z, the open-loop transfer function of the inverse slave impedance is
__(GscL
(1/Zs)oL 1- (Go)CL (5.72)

The open-loop frequency response of 1/Zg is shown in Figure 5.43. It was calculated from
equation 5.72 using the normalized transfer function of Gs.

Suppose that the uncertainty in the dynamic model is on the order of 10 percent.
That is, AG/Gp = 0.10. If it is desirable to insure that the actual value of Zs will remain
within one percent of its nominal specified value in the presence of this uncertainty, then
Ay/yn = 0.01. Therefore, the robustness specification is chosen to be Ay = 0.10. Equation
5.70 implies that

11/Zs1>10  (=20dB)
This robustness specification is represented by the shaded region in Figure 5.43. It can be

seen that the robustness specification is satisfied over the frequency range 0 < » < 1 rad/s.
Notice that the uncertainties in the slave impedance must become greater as the frequency
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range increases because the magnitude of 1/Zg constantly decreases at 20 dB/decade. When
the frequency range is equal to 4.5 rad/s, which is the maximum attainable bandwidth of the
telerobotic system, the magnitude of 1/Z5is 8 dB. This implies that the uncertainty in the
slave impedance for a 10 percent uncertainty in the model is approximately 4 percent. Thus,
the slave impedance is fairly robust to large uncertainties in the H matrix at low frequencies.
The purpose of the second experiment was to determine the frequency response of
the performance parameter Zg,. The second experiment was identical to the first experiment
except that it was performed on the master robot. The H matrix had the following structure:

H= [géizo E;gzg ]

System identification yields the closed-loop transfer function of the master robot control
system, Gry. Using the definition of the master impedance, it can be shown that Gy, = 1/Z,.
Thus, the frequency response calculated from the dynamic model for Gy, is equivalent to the
frequency response of the inverse master impedance, 1/Z,.

As before, two sets of input-output data were acquired. One set was used for
parameter estimation, and the other set was used for cross-validation. Each data set
contained 376 samples, and the sampling interval was 0.04 seconds. A second-order ARX
model was selected as the simplest representation of the master robot dynamics. The model
has the following parameters:

na=2,nb=1,nk=2 FPE =3.04 x 104
Written explicitly in the form of a difference equation, the model is
y(t) = 1.6487 y(t-1) - 0.7657 y(1-2) + 0.0014 u(t-2)

The corresponding transfer function in continuous time is

Gen(s) = -0.0206 s + 0.9737
m> " s2 + 6.6734 s + 84.2817

(5.73)

The model was used to calculate the simulated output from the second set of input data.
The cross-validation is shown in Figure 5.44 where the simulated output and the actual
output are plotted versus time. The agreement is not as good as it was for the slave robot,
but the model is still a reasonably accurate representation of the system dynamics. The
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static gain of the transfer function is 0.0116 rad/s. In a previous section, the static gain of
Gm was found by different methods to be 0.0117 rad/s. This check provides additional
confidence in the model.

The closed-loop frequency response of Gy, is plotted in Figure 5.45. The frequency
response has been normalized so that the static gain is 0 dB. The bandwidth of the master
robot control system is about 12 rad/s. Note that the bandwidth of the master robot is less
than that of the slave robot. In addition, the peak magnitude at resonance is greater, and
occurs at a lower natural frequency. These observations seem to indicate that the master
robot is less rigid and has lower damping. The closed-loop frequency response remains
fairly flat out to 3 rad/s. The range in which the static value of the transfer function can be
used for H matrix design is more restricted than it was for the slave robot.

The open-loop frequency response of 1/Zg, is shown in Figure 5.46. It was
calculated from the normalized closed-loop transfer function of Gy,. Suppose that the
robustness specification is chosen to be Ay = 0.10. This means that a ten percent
uncertainty in the model will cause a change in the nominal master impedance of less than
one percent. The robustness specification is represented by the shaded region in Figure
5.46. It can be seen that the robustness specification is satisfied over the frequency range 0
<o < 1 rad/s. When the frequency range is equal to 4.5 rad/s, which is the maximum
attainable bandwidth of the telerobotic system, the magnitude of 1/Zy, is 6 dB. This implies
that the uncertainty in the master impedance for a 10 percent uncertainty in the model is
approximately 5 percent. Thus, the master impedance is fairly robust to large uncertainties
in the H matrix at low frequencies.

~ Now that dynamic models have been found for the master and slave robots, they can
be used to calculate the frequency response of the performance parameter Ry. The position
ratio defines a relationship between the robot forces such that

¥s =Ry ym (5.74)

Since ym is an output of the control system instead of an input, it is not possible to
determine the transfer function Ry directly by system identification. However, when the
slave robot is not interacting with the environment, yp, is related to the system input fy, by
the master robot dynamic model

¥Ym =(Gm H11 + Sm) (5.75)

Similarly, ys is related to fy, by the slave robot dynamic model
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ys = (Gs H21) fm (5.76)

If fm is a virtual force generated in the computer, the master robot sensitivity can be
eliminated from equation 5.75 to give

¥m = (Gm H11) fm .77

The position ratio is obtained by dividing equations 5.76 and 5.77. If the position ratio is
specified to be Ry = 1.00, both elements in the first column of the H matrix will have unity
gain. Therefore, when

H=[Hll=1 Hj2=0 ]

Hz1=1 H2=0
the position ratio becomes
G
=Js
Ry=g% : (5.78)

The closed-loop transfer functions Gg and G, have already been determined through
system identification. Substituting equations 5.63 and 5.73 into equation 5.78 and
simplifying yields

_-0.0560s3 + 2.1241s52 + 11.9490s + 210.519

Ry =0.0206s3 + 0.702952 + 8.4028s + 207.784

(5.79)

The simplest representation of the dynamics that determine the position ratio is a
third order equation. The static gain of the transfer function is Ry = 1.01, which is almost
the same as the specified value of Ry = 1.00. Equation 5.79 can be used to calculate the
frequency response of Ry. The frequency response is shown in Figure 5.47, where the
static gain has been normalized to 0 dB. The position ratio remains constant out to 4 rad/s,
which is nearly equal to the maximum attainable bandwidth of the telerobotic system. The
position ratio does not fall off at higher frequencies because the dynamic responses of the
master and slave robots decrease at the same rate.

In the third experiment, the frequency response of the performance parameter Ry
was determined. The force ratio defines a relationship between the robot forces such that



f=R¢ fm ‘ (5.80)

If the input signal is the master force f,, and the output signal is the slave force fg, system
identification yields the transfer function R directly.

A random binary input signal was generated in the computer to simulate a vertical
force acting on the master robot's force sensor. The simulated master force was used to
drive the slave robot, which was compressing a spring scale. The spring scale exerted a
reaction force on the slave robot. The virtual master force and the actual slave force were
recorded. , )

Using previously measured static values of the system parameters, the H matrix was
designed to achieve a force ratio of Rf = 1.00. The H matrix had the following structure:

_ [ H1=0 Hjy=0 -
H= [ Hy1=0.78  Ho7=0.10 ]

The master robot was not driven. The slave robot's motion resulted from the combined
action of the virtual force from the master robot, and the actual force from the spring scale.

Two sets of input-output data were acquired. Each data set contained 376 samples,
and the sampling interval was T = 0.04 seconds. The input-output data used for parametric
estimation of Ry are plotted versus time in Figure 5.48. The amplitude of the random binary
input signal alternates between -15 and -20 1bf. This negative amplitude variation insures
that the spring scale is always in compression. The output signal is positive because the
spring scale pushes up against the slave robot. The input-output data used for cross-
validation of the dynamic model are plotted in Figure 5.49.

A second-order ARX model was selected as the simplest representation of the
observed input-output behavior. The model has the following parameters:

na=2,nb=1,nk=2, FPE = 1.603
In difference equation form, the model is
y(t) = 1.2065 y(t-1) - 0.5134 y(t-2) - 0.2611 u(t-2)

The FPE was considerably higher than it was for the parametric estimation of the robot
dynamics. This is probably a result of the model's inability to predict the high-frequency

152



oscillations in the noisy slave force signal. However, the model does predict the large-scale
dynamic behavior of the robot forces fairly well. This is evident from the cross-validation
shown in Figure 5.50.
The continuous-time transfer function corresponding to the ARX model of the force
ratio is |
RKs) = = 5.3507s - 231.8675
s¢ + 16.6666s + 272.5188

(5.81)

The static gain of the transfer function is Rf = 0.85. This is 15 percent lower than the
specified value of R¢ = 1.00. The discrepancy may result from hysteresis in the measured
reaction force. The hysteresis is caused by backlash in the slave robot's wrist joint. The
wrist joint is normally locked to prevent rotation. However, a significant amount of
backlash was observed in the wrist joint during the experiment. The force ratio is
approximately equal to its specified value when the spring scale is compressed to 20 Ibf.
This can be seen by comparing the input and output signals in Figures 5.48 and 5.49. In
contrast, the force ratio is only about 75 percent of its specified value when the spring scale
is released to 15 1bf. While a nonlinear effect like hysteresis cannot be completely
characterized by a linear model, the transfer function correctly predicts the average force
ratio over the entire cycle.

The frequency response of Rf can be calculated from equation 5.81. The
frequency response is shown in Figure 5.51, where the static gain has been normalized to 0
dB. The force ratio remains constant out to 4 rad/s, which is nearly equal to the maximum
attainable bandwidth of the telerobotic system. At higher frequencies, the force ratio falls
off rapidly because the slave robot cannot move fast enough in response to the force input
from the master robot.

The robustness experiments have demonstrated that the performance parameters Zyy,
Zs, Ry, and Ry remain nearly constant over the full range of human capability. Static values
of the system variables can be used to design the H matrix for adequate performance within
the bandwidth 0 < w < 4.5 rad/s. At low frequencies, the robot impedances are robust to
modeling uncertainties on the order of 10 percent. As the frequency range increases, the
dynamic models used for H matrix design must be known more precisely.

153



154

u(t) '| ' y()
Figure 5.35: Linear System
v(t)
u(t) y(t)

Figure 5.36: Linear System with Additive Disturbance



>|UJ

Figure 5.37:

ARX Model

pLy
>|—‘ F-——

y(t)

155



input

10

Fs (Ibf)
o
L

Time (sec)

Output

0.2

0.0+

Ys (rad)

a1 |
] '

0.2 4=y

Time (sec)

Figure 5.38:  Input-Output Data for Parameter Estimation of Gg

156



Fs (Ibf)

Ys (rad)

Input

10

0T A1 N /] ]

0 -

54 &JU L b J U U J -y

'10 L v T — T v T v LS T L

0 5 10 1§

Time (sec)
Output

02

o

N
-
-
-

Time (sec)

Figure 5.39:  Input-Output Data for Cross-Validation of Gg

157



Ys (rad)

Time (sec)

Figure 5.40: Cross-Validation of Gg

10

Measured
Predicled

158



dB

10

Magnitude of Gs

Figure 5.41:

w (rad/s)

Normalized Closed-Loop Frequency Response of Gg

159



160

Yn

Figure 5.42: Closed-Loop System



dB

Magnitude of 1/Zs

10-1 100 101 102
w (rad/s)

Figure 5.43: Open-Loop Frequency Response of 1/Z

161



162

Measured
Predicied

...._...._...._21_...._....
” o - o - ~ ©

(pud) wy

10

Time (sec)
Cross-Validation of G

Figure 5.44:



dB

163

10

Magnitude of Gm

01— : "””140'0 : 101 : .....1.02
w (rad/s)

Figure 5.45: Normalized Closed-Loop Frequency Response of Gy



164

Magnitude of 1/Zm

w (rad/s)

Figure 5.46: Open-Loop Frequency Response of 1/Zn



dB

10

Magnitude of Ry

0L L ..,..1.0.0 L 101 L ..‘.‘1.02
w (rad/s)

Figure 5.47: Nommalized Frequency Response of Ry

165



Fm (ibf)

Fs (Ibf)

Input

_10;

-5 ]

45:MMW
-20

-30 +—+——+——r——

Time ({sec)

Output

10 15

15

10

Time (sec)

10 15

Figure 5.48: Input-Output Data for Parameter Estimation of R¢

166



Input

-5

-10

-15

Fm (Ibf)

-
o
o4

o

Time (sec)

Qutput

25

15

Fs (ibf)

10 -

Figure 5.49:

5 10 15

Time (sec)

Input-Output Data for Cross-Validation of R¢

167



Fs (ibf)

15

10

o~

Figure 5.50:

o

Time (sec)

Cross-Validation of R¢

10

Measured
Predicted

168



dB

10

Magnitude of Rf

w (rad/s)

Figure 5.51: Normalized Frequency Response of Ry

169



5.8 Stability Conditions

The stability of the telerobotic system depends on the relationship of the H matrix to the
dynamics of the human arm and the environment. System stability is guaranteed if the
following conditions are satisfied:

1
P11/ <"s—h| (5.82)
1+P;1Sh :
'P22+ APShl > |El (5.83)

The first stabi1i>ty condition applies to the interaction between the master robot and the
human arm. The second stability condition applies to the interaction between the slave robot
and the environment. The physical meaning of the stability conditions can be appreciated if
they are expressed in terms of the robot impedances. The impedance of the master robot is
given by

_ 1+PpE
Zm= P11 + APE (-84)

For unconstrained motion, E = 0 and the master robot impedance becomes

1

=B (5.85)

Using this expression in equation 5.82, the first stability condition can be rewritten as
|Zml > ISh! (5.86)

The impedance of the human arm is the sensitivity Sp. Therefore, the first stability
condition states that for unconstrained motion, the impedance of the master robot must be
greater than the impedance of the human arm. Equation 5.86 is a sufficient but not an
absolutely necessary condition for stability of the master robot. In other words, the robot
may be stable if |Zy,| < ISyl, but it can never be unstable if IZg] > IS,
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The impedance of the slave robot is given by

_ 1+P11Sp
Zs ~ P2 + APSy (5.87)
Substituting this expression into equation 5.83 yields
1Zgl > [El (5.88)

The impedance of the environment is E. Therefore, the second stability condition states that
for constrained motion, the impedance of the slave robot must be greater than the impedance
of the environment. Equation 5.88 is a sufficient but not an absolutely necessary condition
for stability of the slave robot. In other words, the robot may be stable if IZgl < IEl, but it
can never be unstable if IZgl > [EL

The first stability condition will be verified by finding a lower bound on the master
robot impedance at which the system exhibits stable behavior. To prove the stability
condition, it is only necessary to show that the lower bound is no greater than the impedance
of the human arm. '

The master impedance is a performance parameter that can be arbitrarily specified
by adjusting the H matrix. The H matrix is designed by expressing the master impedance
in terms of known system parameters. If the slave robot is free to move without constraint,
the master impedance can be written as

1
Zm = GmH11 + Sm

(5.89)
by substituting the definition of P11 into equation 5.85. Solving the previous equation for
Hj yields

Hyy = 25 (590)
- m

This equation can be used to calculate the magnitude of Hqj necessary to achieve any
desired impedance Zy,. The master impedance is specified as a fraction of the human arm
impedance Sp. The values of G, Sm, and Sp have been measured experimentally for a
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particular configuration of the master robot and the human arm. It was found that Gy =
0.0117 rad/Ibf, Sm = 0.0033 rad/Ibf, and S = 115.5 Ibf/rad for small elbow pitch
movements near the horizontal.

For the first experiment, the master impedance was specified to be Zm = Sp. The
objective was to demonstrate stable behavior. The H matrix had the following structure:

_ [ Hn=0.46 Hj=0
H‘[ Hy;=0 Hop=0 ]

The magnitude of Hy; was calculated from equation 5.90 using the values given above for
the system variables. Since the first stability condition applies to the interaction between the
master robot and the human arm, it is not necessary to drive the slave robot. Only the
master robot was driven. This was done by setting all gains in the H matrix except Hyj to
zero. An increasing vertical force was applied to the master robot so that its elbow moved in
pitch. The human arm was kept rigid during the maneuver. The applied force was recorded
over a 5-second period. Figure 5.52 is a plot of the master force versus time. Since the
force increases smoothly without oscillation, the master robot is stable. This experiment
establishes a lower bound for stability on Zy,. The lower bound is at most equal to Sp.
Therefore, the first stability condition is verified.

To demonstrate unstable behavior, the master impedance was specified to be Zm =
0.5S}, in the second experiment. The desired impedance was achieved by calculating the
required magnitude for Hyj. The H matrix had the following structure:

_ [ Hii=1.20 Hj2=0
H‘[ H21=0 H22=0 ]

The master force is plotted as a function of time in Figure 5.53. The force increases
smoothly at first, then suddenly undergoes large amplitude oscillations. It is obvious that
the robot is unstable. Since the master impedance is much smaller than the human arm
impedance, this result is expected.

The first stability condition is conservative. That is, it guarantees stability if it is
satisfied, but it does not predict the onset of instability. As illustrated in the previous two
experiments, the transition from stable to unstable behavior occurs somewhere in the region
0.5Sh < Zg < Sh.

The second stability condition will be verified in the same manner as the first
stability condition. That is, a lower bound for stability will be established on the slave robot
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impedance. To prove the stability condition, it is only necessary to show that the lower
bound is no greater than the impedance of the environment.

The slave impedance is a performance parameter that can be arbitrarily specified by
adjusting the H matrix. The H matrix is designed by expressing the slave impedance in
terms of known system parameters. When there is no force reflection from the
environment, the gain of Hj is zero. Consequently, the admittance P12 =0, and equation
5.87 can be simplified to

z =L (5.91)

Note that by assuming no force reflection, the dependence of Zs on the human arm
impedance Sp has been eliminated. Substituting the definition of P2; into the previous
equation gives

1

Zs=GsHy, + S5 (5.92)
Solving this equation for Hp yields
By = 55 | (593)

Equation 5.93 can be used to calculate the magnitude of Hp2 required to achieve any desired
impedance Zs. The slave impedance is specified as a fraction of the environmental
impedance E. The magnitude of E has been determined experimentally for compression of
a spring scale. The values of G and Ss have also been measured for small elbow pitch
motions of the slave robot. It was found that Gg = 0.0117 rad/Ibf, Ss = 0.0033 rad/Ibf, and
E =217.0 Ibf/rad.

For the third experiment, the slave impedance was specified to be Zg = E. The
objective was to demonstrate stable behavior. The H matrix had the following structure:

_ [ H=0.20 Hjz=0
H= [ Hyi=1 Hop=0.11 ]

Because H2 is zero, there is no force reflection, and the slave impedance depends solely on
Hp;. The magnitude of Hp; was calculated from equation 5.93 using the values given above
for the system variables. Hpj was given a unity gain so that the slave robot would move in
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response to an increasing vertical force exerted on the master robot. The slave robot
compressed a spring scale that simulated a compliant environment. The reaction force on
the slave robot was recorded over a 5-second period. Figure 5.54 is a plot of the slave force
versus time. The slave force increases steadily without significant oscillation. Thus, the
slave robot is stable. This experiment establishes a lower bound for stability on Zs. The
lower bound is at most equal to E. Therefore, the second stability condition is verified.

The purpose of the fourth experiment was to demonstrate an unstable interaction
with the environment. The slave impedance was specified to be Zs = 0.5E. The desired
impedance was achieved by calculating the required magnitude for Hz2. The H matrix had
the following structure: '

_T Hn=0.20 Hjy=0
H‘[H21=1 Hy=0.51 ]

The measured reaction force is plotted as a function of time in Figure 5.55. The slave force
oscillates violently, indicating that the slave robot is unstable. Since the slave impedance is
much smaller than the environmental impedance, this result is expected.

Like the first stability condition, the second stability condition is conservative.
Stability is guaranteed if the condition is satisfied, but the system may not become unstable
if the condition is violated. It can be concluded from the previous two experiments that the
transition from stable to unstable behavior occurs somewhere in the region 0.5E < Zs <E.

These experiments have demonstrated that stability depends on the relative
magnitude of the impedance at both ends of the telerobotic system. For stable behavior, the
master impedance should be greater than the impedance of the human arm, while the slave
impedance should be greater than the impedance of the environment. These results are
consistent with theoretical predictions.
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5.9 Summary

The bilateral impedance control architecture was successfully implemented on a
telemanipulator having seven degrees of freedom. The H matrix was modified to include
force transformation terms. These additional terms were necessary to map forces measured
in Cartesian space into input commands to the stabilizing position controllers in joint space.
The force transformation scheme was based on the transpose of the manipulator Jacobian.

Static values were determined for the system variables Gy, Sm, Gs, Ss, Sh, and E.
These values were used in the design of the H matrix to achieve desired performance
characteristics. The performance parameters were measured and compared to their specified
values.

The robot impedance was modulated by changing the gain and structure of the
compensators in the H matrix. A stiffness impedance was obtained when the H matrix had
constant gain. A damping impedance was produced when the H matrix integrated the force
input.

The position ratio was measured for unconstrained motion in two degrees of
freedom. Three position ratios were demonstrated: Ry=1:1, Ry=2:1, and Ry=1:3. In all
cases, the actual position ratio was within 10 percent of its specified value. The error
seemed to increase as the difference in robot positions increased.

The force ratio was measured when the slave robot was compressing a spring scale.
Two force ratios were demonstrated: Ry=1:1 and Rg=2:1. In both cases, the actual force
ratio was within 2 percent of its specified value.

It was shown that the force ratio, the position ratio, and the slave impedance can be
specified at the same time.

Second-order dynamic models were obtained for G, Gs, and Ry by the ARX
parametric estimation technique. A random binary input signal was applied to the system,
and the resulting output signal was recorded. The dynamic models were cross-validated by
calculating a simulated output and comparing it to the observed output.

The frequency response of the performance parameters was derived from the
dynamic models found through system identification. The performance parameters were
nearly constant over the full range of human capability, 0 < ® < 4.5 rad/s. This implies that
static values of the system variables can be used for H matrix design at low frequencies.

Robustness to modeling uncertainties was determined from the shape of the
calculated frequency response. At low frequencies, the robot impedances will remain within
one percent of their nominal specified values if the modeling uncertainties are no more than
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10 percent. However, as the frequency range increases, the dynamic models used for design
of the H matrix must be known more precisely.

The stability conditions were verified by establishing lower bounds on the robot
impedances. For unconstrained motion, the transition from stable to unstable behavior
occurred somewhere in the region 0.5Sp < Ziy, < Sp. For constrained motion, the transition
occurred in the region 0.5E < Zs < E.

The experimental results for performance and stability were consistent with
theoretical predictions.
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Chapter 6
CONCLUSIONS

The bilateral impedance control architecture differs from previous approaches in that
force signals travel in both directions between the master and slave robots. The
communication of force signals within the system is regulated by the H matrix. By tailoring
the structure of the H matrix, it is possible to arbitrarily specify desired system performahce
characteristics. This is the primary advantage of bilateral impedance control.

System performance can be completely described by a set of three independent
parameters. These parameters may be the force ratio, the position ratio, or the impedance of
either robot. To form an independent set, one of the parameters must be the slave
impedance. The performance parameters are functions of the system variables that govern
the dynamic behavior of the robots, the human arm, and the environment.

The performance parameters are fundamentally related to the elements in the H
matrix. The compensator Hjj determines the master impedance, while the compensator Hp
determines the slave impedance. The compensator Hy; couples the motions of the robots,
and the compensator Hj2 controls force reflection. By selecting the relative magnitudes of
these four elements, three performance parameters can be specified simultaneously.

The only limitations on the choice of performance parameters are imposed by the
requirements for system stability. There are two conditions that are sufficient to guarantee
stability for both linear and nonlinear systems. For unconstrained motion, the master
impedance must be greater than the impedance of the human arm. For constrained motion,
the slave impedance must be greater than the impedance of the environment. The system
may be stable when the conditions are violated, but it can never be unstable when the
conditions are satisfied. Since both the master and slave impedances are performance
parameters that can be arbitrarily specified, it is not necessary to trade off performance and
stability in most cases. _

Power is generated in the telerobotic system by the human arm and the control
system actuators. The human arm is an independent source of effort, while the actuators are
dependent sources of effort. There is no transfer of power between the master and slave
robots. Only information is exchanged by the transmission of force signals. The system's
order is equal to the number of independent energy storage elements. The bilateral
impedance control architecture can be modeled as a sixth-order system. Potential energy is
stored in the stiffness of the human arm, the environment, and the stabilizing control
systems. Kinetic energy is stored in the inertia of the robots.

-3
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When the bilateral impedance control is implemented on a multi-degree-of-freedom
telemanipulator, force transformation terms must be added to the H matrix. These
additional terms map forces measured in Cartesian space into input commands to the
stabilizing position controllers in joint space. The transpose of the manipulator Jacobian
can be used to transform force. ,

In practice, the specified performance characteristics can be achieved fairly
accurately. However, the deviation of the performance parameters from their desired values
tends to grow as the difference between the master and slave variables gets larger. This
could result from small errors being amplified across the system. Additional errors are
introduced because the zero readings of the force sensors drift over time. Since these errors
are cumulative, the force sensor zeros must be reestablished periodically.

The form of the robot impedance depends on the structure chosen for the
compensators in H matrix. If the compensators have constant gain, force is proportional to
position and a stiffness impedance is obtained. If the compensators integrate the force
input, a damping impedance is obtained where force is proportional to velocity.

If the motion of the robots is relatively slow, the H matrix can be designed using
static values of the system variables. The performance parameters are nearly constant over
the full range of human capability. The control architecture is robust to small modeling
uncertainties at low frequencies. However, as the frequency range increases, the system
variables must be known more precisely.

The main disadvantage of bilateral impedance control is that values must be
determined for the system variables before the H matrix can be designed. The variables that
describe the dynamic behavior of the human arm and the environment are continually
changing. These variables must be revised for each new task or configuration. In a
complex world, the control architecture would require some form of adaptive control to
make it truly practical.

The major goal of the research program was attained. Theories of performance and
stability were developed and verified experimentally. This work has shown that bilateral
impedance control holds promise as a new control method for telerobotic systems.
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